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ABSTRACT

The purpose of the work reported here was to present the structure

of factor analysis to a physical scientist and to extend the structure
where it was weakest. ’ ‘

The reference guide in the appendix performs‘as a dynamic surQey
of factor analysis by guiding a neophyte factor énalyst through an

application. Reference is made to expanded presentétioné in the body

of the report., ) o ) i
The structure of factor analysis.has been extended in the following

areas: effects of the number of observations,'sampling éffedt, interpvé-

tation of factors, and communality.
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EVALUATION

The purpose of this work was to study techniques in factor analysis in
order to provide an objective and mathematical standard in the field. This
study was needed to make factor analysis a useful analytical tool for prac-
ticing engineers and scientists. Those areas investigated which have made
factor analysis less attractive for use as an analytic.tool are: problem of

_communality estimates, number of observations for a valid factor analysis,
unlqueness, and sampling effects on factor structure. Attempts were made
and were partially successful in storing these’ problems. The results of
this study are two fold: .

(1) An attempt to explain mathemétically the events occurring

during a factor analysis which can be. understood by eﬂgineers and scientists.

This in turn will allow a practicing engineer to make an obJective decision
whether he can use factor analysis as an analytic tool.

(2) Once an englneer decides to use factor analysis in his work,
a handbook or reference guide is provided which outlines a step by step
procedure for conducting a factor analysis; starting with the construction
of his experiment and ending with aids to interpret results. Computer

‘program descriptions are also provided -including formats for inputting raw

data. v :

The results of this study have alreadybbéen put to préctice by members

of EMITH in constructing an experimental clasﬁiflcatlon model to be used for

automatic dissemination of technical documenté to engineers and scientists
~in RADC.

RoSvino

RADC Project Engineer
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Section I

INTRODUCTION

1.1 BRIEF HISTORY - _
It is appropriate to begin the Introduction to this final report
with Truman Kelley's remarks made in his 1940 publication (Reference 1,
p. 120): ' : .
"There is no search for timeless, spaceless, population-
less truth in factor analysis; rather, it represents a simple,
straightforward problem of deseription in several dimensions
of a definite group functioning in definite manners, and he
who assumes to read more remote verities into the factorial
outcome is certainly doomed to disappointment."
This particulaf passage was also selected by Harman (Reference 2,
pP. 5) to emphasize the simpliéity of the problem and potential pitfalls
of understanding its solution. Regardless of what is done in

methodology or conceptual studies, an acceptance of the basic model

' necessarily implies that the problem remains simple and the solutien

remains ambiguous.
Since factor analysis was found useful around the turn of this

century by a psychologist, Charles Spearman, and described mathematically
by a statistician, Karl Pearson, the development of techniques has

more or less followed the lines of the empirical school, That is,
methods to obtain factor solutions have evolved more from the necessity
of describing certain underlying psychological.entities by meaningful
groups of hypothetical constructs than from an -application of advanced
mathematical ideas to the basic mathematical problem. A&s a consequence,
factor analysis suffered from a lack of mathematical ordering' of its
esoteric devices until Harry Harman, in close association with ‘
Karl Holzinger, published in 1960 an excellent summary of most of

the significant factor analysié work which had been done to that time
(Reference 2). This book, Modern Factor Analysis, has been welcomed




into and accepted by most of the factor analysis groups in this
country as a general reference gulde useful in selecting an appropriate
method or sét of methods. Its comparative presentations are very good.
The intent of this study was not simply a relteration of Harman's
work with, perhaps, a few more up-to-date details. Rather it was an
investigation into a few of the unsolved, classic mathematical problems
with a demonstration of how too little knowledge of necessary assumptions
concerning these problems can be troublesome and at times devastating,
Attempts were made and were partially successful in solving the problems’
of commnality estimates, number of observations for a vaiid factor

analysis, uniqueness, and sampling error effects on factor structure.

1.2 THE MODEL AND SOME MATRIC NOTATIONS

Factor analysis is concerned with the study of an array of
numbers which has certain properties and contains information about
linear relationships among sets of data points. This array is called

a ccrrelation matrix and the numbers, or entries, are called'correlation
th
i

coefficients. The array is so constructed that the number in the

row and jth

column represents the correlation, or degree of linear
th and jth sets of data

points, For 5 sets of data points such an array might look like:

relationship (y = ax + b), between the i

1 2 3 4 5
1 - & a4 3 .
2 .6 - . -2 -6
3 4 - 2.
4 3 -2 .2 - .8 "
5 A -8 a1 .8 -

Easily noted is that the number in the 4th row and Sth column is
the same as the number in the 5th row and 4th column, and, in fact, the
umber in the ith row and jth column (call it rij) is’ the same
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as the number in the jth row and it? colum (call it rji)' This

‘property of symmetry, as well as others, will be stated more formally

a little later but is worth noting in a preliminary discussion on the
classic problems and the model. ' )

The froblems treated in this report are mostly those which have
caused mathematiciéns to reject factor analysis as a useful analytical
tool, Many»of the reasons for rejection are unjustified--some are
justified. Those reasons which are unjustified concern the misunder-
standing or misuse of the basic model and/or assumptions necessary in
determining a "unique" solution. ' )

The basic model stated simply is this: given a correlation matrix
for a set of data points with appropriately selected diagonal values,
determine a set of factors (or hypothetical variables) which when
linearly combined reproduce the originalvset of data points. In a
sénse, then, the model is the same as for multiple linear regression
only the independent variables are replaced by hypothetical variables,
The_big difference, of course, is that the final synthesis of original
data poinfs‘is complete for all variables in factor analysis and.
complete only for the dependent variables in a regression.

Let us adopt the vector notation X to mean an ordered sequence
of values, or elements, (xl, xz, sees xN). Then. in vector notation
the linearity of the model is seen to be

X, = .
3 a lF

. + ese +a, F + a,U
51f1 ¥ 355, imm T 3555

where Xj is the original set of obseryations, F., through Fm

. . 1
are the hypothetical common variables, or factors, Uj is the unique

factor, and the coefficients ‘ajl through a).m and a]. are those

loadings required toireproduce xj. The "linearity" of the model can

not be overemphasized. In most multivariate studies, it is at best a

crude approximation to inherent nonlinearities which occur in nature.
The model represents a compromise between synthesis accuracy and
computational feasibility, a compromise which is too often considered

inviolate for interpretation purposes.




Before outlining the classic problems let us digress an instant
to revie;: some matrix algebra and notation, A set of vectors arranged
in such a manner that the elements of the vectors form rows and colums
is called a matrix and will be denoted by a capital letter, e.g. R.
To illustrate further using the previous example:

1.0 .6 o .3 .1

.6 1.0 1 -2 -~.6

R = W4 1 1.0 2 A o= (rgy)

_ 1]
3 -2 .2 1.0 .8

1 ~-.6 1 .8 1.0

Note that the diagonal elements are cnes, a classic problem we shall
dwell on shortly. The transpose R' of this matrix is simply the
matrix with its rows and columns interchanged such that a typical

element rij becomes rji‘ A symmetrié matrix is a matrix which is

the same as its transpose-- R = R' in our example.

To review the four fundamental matrix operations:

"

A+B (aij + bij)

A-3B8B = (aij - bij)

AB

L1

N
) a; by where N is the number of colums
=1 in A and rows in B

cA

(caij)

The row order of a matrix is the number of rows of the matrix.
The column order is the number of columns. The determinant of a matrix

of order N is the summation defined as follows:

il




N
det A = [a] = § (-1
k=1

itk sy
Yy det A(i]K)

th

where 1 $i SN and A(ilk) denotes a matrix with the i~ row and

kth colum removed. Starting with the determinant of a second order
square matrix (number 6f rows equals the number of columns)_the idea
of using a determinant to define a determinant presents itself as being
the easiest to understand and illustrates the difficulty of deriving
another definition. A matrix is singular if det A = 0.

Some important theorems in applying matrix theory to factor
analysis are: '

Theorem 1.1: det A = det AT

Theorem 1,2: If éll:elenenté of any colum (or row) of A

are zero, then det A = 0,

Theorem 1.3: If two columns (or rows) of A are proportional,

then det A = 0.
Theorem 1.4: If A is square of order n, det (cA) = c" det A.

Theorem 1.5: Let A be a square matrix of order n. Then the

system of homogeneous linear equations A(Xl, K.y soes Xn) = AX =0

2
has a nontrivial solution if det A = 0,

‘If we delete some rows and columns of a matrix A, the remaining
elements form a submatrix of A; A square submatrix of A is called
principal if its diagonal is part of the diagonal of A. The rark
of A _i$ the order of the largest square submatrix of A whose

determinant is nonzero,

1.3 A STATEMENT OF THE CLASSIC PROBLEMS
As we mentioned previouély, factor analysis is concerned with the

study, or factoring, of a correlation matrix, Having discussed the




logical mode of representing the matrix and associated items of

interest, let us restate the factor analysis problem.

Theorem 1,6: For every correlation matrix R there exists a -

corresponding factor matrix F such that

FE' = R.

Furthermore,

Theorem 1.7: There exists an infinite number of factor matrices

F which reproduce any given correlation matrix R. . a

The problem, then, is not only to determine F -but to find an F
which is most likely to satisfy a given set of initial conditions. A v
factor analysis is done in two stages:

Stage 1: Factoring problem-~find an F such that ‘

FI' = R and also such that the column order
of F is the minimal rank of R,

Stage 2: Rotation problem--rotate the arbitrary reference

frame into a "preferred" or "simplifying"
position,

In Stage 1 we mentioned the minimal rank of R. Ordinarily the
rank of a matrix is fixed as soon as its elements aré_fixed. However,
the diagonal elements of R have special meaning in that they
represent the total variance of each variable. Due to the description
of the model in terms of both common and unique factors, the total
variance can be split into common factor variance (communality) and
unique variance, The factor analysis of a correlation matrix with
communalities on the diagonal, the reduced correlation matrix, will
then yield only the common factor portion of the model, However the .
proportion of total variance ascribable to common factors is
generally unknown, Thus, the matrix R is incomplete at the onset'of

a factor analysis, The communality problem consists of finding those

diagonal elements of R that minimize the rank of R,

Comreitr s b v e oy

i e v




.Section V)., By a previousiy stated theorem, however, there are an

Once the rank of - R has been established, the number of common

H
i
i
{

factors is known and F can be determined by a vafiety of means (see

infinitude of F's which will do the job. The selection of the ) i

- solution configuration--in other words, the relative number of high

loadings per factor as well as degree of relationship among factors--
is another classic problem. Probably theZmost commonly selected

configuration is one called simple structure developed by

L. L. Thurstone and offers the psychologist‘an optimal balance
between statistical simplicity and psychological utility.  There is
little reason to believe that simple structufe is of any real value
outéide the domain of a very special class of problems; however,
intuitively it represents what may usually be desired in a factor
solution (see Section V for detail). '

Solution uniqueness is another classic préblem which is importanf
in defining the general usefulness of factor analysis., Assuming that
a solution has been found which satisfies abgiven class of constraints
and boundary conditions; what can ﬁe say about the uniqueness of this
solution compared with a soiution dérivéd using another set of data

points from the same multivariate population? Both solutions will be

“identical if infinite samples are used. However, from a practical

viewpoint only'a finite number of samples are possible and, in most

cases, this number is small. Thus, the problem of uniqueness is

really an error analysis of sampling effects on bivariate statistics

and matrix operations.

Solution completeness is a problem which involves a decision to

stop_the factoring process after enough factors have been found (or

extracted). This decision can be made in many ways depending on the
kind of factor structure being derived. There does not exist a
universal cohpleteness criterion and the probleﬁ of completeness is
often thought of as really the problem of communality selection.

In Stage 2 the rotation problem was stated as being one of

finding a reference frame which provides a '"preferred" or "simplified"

position, The rotational aspects of factor analysis are the most




difficult to either understand or implement. This problem is by far
the most important since the factor analyst has an infinitude of
reference frames at his disposal from which he is to select one.
Consider a similar problem whereby a point (x, y) in a plane is
identified by its position relative to some orthogonal or non-
orthogonal axes. The meaning of "preferred" or "simplified" is
indeed vague and more or less has been defined by the analyét as a
solution which fits closest to his hypothesized factor structure. In
the case of a psychologist this factor structure has been characterized
by Thurstone's simple structure. There are other structures which
can be used, but they are not nearly develobed to the extent of
Thurstone's work.

1.4 METHOD OF APPROACH TO THE CLASSIC PROBLEMS

Naturally the classic problems--those problems which have defied
analytical solutions--can not all be solved in one year of study.

The very implication would be most insulting to the scientists who
have spent lifetimes trying to clarify the intrinsic value of the
methods, However, the time is ripe to establish a mathematical
standard in factor analysis and provide mathematical explanations of
the infinite solution space phenomenon as it effects uniqueness and
other solution characteristiecs. The problems which have been
considered in this study are the following:

1. communality estimate and completeness

2. uniqueness

3. rotation and interpretation,

The communality problem was approached from the standpoint of
selecting diagonal elements which both minimized the rank of R and
preserved the Gramian property (symmetric and the determinants of all
principal submatrices are positive or zero). Several attempts were
made using various iterative schemes and the technique of bordering
has been found to solve the problem, Details of this technique are
given in Section IV,

The uniqueness problem was approached from two angles--perturbing

correlations and perturbing data. Correlations were bounded by




standard error intervals based on the sample size and effects noted

on the factor structure. Data was randomized according to hypothetical
correlations and distribution functions and new correlations derived
and factored. Effécts were agaih noted on the factor structure and
empirical results are presented in Section IV. '

The rotation and interpretation problem was approached through

regression analysis in an attempt to provide a measure of importance

for oblique or rotated factor loadings. The classic problem has been
to identify or interpret factors using the factor loadings. Results

are presented in Section V,




Section Ii

CORRELATION THEORY

2.1 INTRODUCTION
In this seetion we shall concern ourselves with the basic unit of

factor analysis: the correlation coefficient. Factor analysis

amounts to factoring a certain matrix, the correlation matrix, whose
elements are the correlation coefficients., Tn this section we

shali talk about these correlation coefficlients, In 2.2 we shall
generally define correlation and the coefficient describing it. In 2.3
we will consider different types of bivariate correlation coefficients
and also compute examples, It will be seen that the coefficient most
commonly used is Pearson's product-moment correlation coefficient.

This coefficient will be interpréted geometrically in view of the factor
model in 2.4, Its statistical significance‘and reliability is then
discussed in 2.5. In 2.6 we consider how the product-moment correlation
coefficient can be derived if data is missing from one variable or the
other., In 2.7 we will touch briefly,'for completeness, the areas of
partial and multiple correlation ccefficients.

2.2 DEFINITION OF CORRELATION AND THE COEFFICIENT '

In factor analysis we are interested in the interrelationship of
different variables, which we then analyze. But first we have to have
a mathematical tool to express interrelationship between variables.,
This tool is given by the correlation coefficient.

Denote by Xj and X, two variables each having values for N

k
individuals. We first make the two variables comparable by deviating
them, that is measuring their values from comparable zero points,

This is achieved by forming the deviates:

N
= = 1
X, = X, -X X. = = .+ = th £ iab X
§ j j» 3 N igl X]i the mean of variable j
and
- - 1 N
% =% -% ., B =5 iz X = the mean of variable X,
=] .

10

-




Basically we assume that the relationship between variables xj
and X is 1inear, so thgt in_plotting_their paired values (xji’ xki)’
i=1,...,N, in a coordinate system, with the zero point at the means
‘of the two variables, we can ideally lay a straight line through these
points, It will,_though, obviously not always be the case that the
points be on a straight line. 'Then we try to fit & straight line to the
points.- Expressing the point; on the line by ;%i’ then the line can

be described by

;'i = Ky "vi 2 1,..0,N,

where a is called the slope of the line., The slope shows the

relationship between .iji and X ., i = 1,...,N,  If a = 1,
§5i = xki and the relationship is perfect; if a = 0, there
does. not exist any relationship between §5i and X i i = 1,...,N,

So we are interested in a which will later constitute our coefficient

_of correlation.’

§5i = ax, isa line "fitted" to the points. The condition for
it is a "least square fit", that is, ‘

igl (xji - ;si)z = minimum. ;

"Thenvwe have ;
}f( Z_N 2 ‘
L %55 - xji) = igl (xji - axy ) ;

= g x2. - 2a g Xo.% . + a2 g 2 §

g5y 3 gey OURET T kot i

with the condition to choose a so that this expression is a minimum,
Therefore we differentiate the expression with respect to a and set
the result equal to zero, obtaining

N
b3 + 2a 2 X

¥3i%ki

11




Therefore,

P)‘{ .
X.o:X
L Tk
a = AL .

H.M =
o
e

This Is the formula for the slope of a line fitting the trend of paired

measures so as to minimize the x. residuals. It is called the

regression formula for xj on X . Dividing numerator and denominator

by N yields

1 32

X
i il)ixki
a = 5 .
Wy ki
iz ¥
We have
N x2 .
) f§i- = aﬁ = the variance of x .
izl
Thus
)
XaeX .
Lo *53%i
a .LLZ____
Nok

The slope a, however, is still greatly affected by the relative

variabilities of the measures x. and Xy We make x. and %

comparable by dividing them each by their standard deviation. Calling

Zj = xj/oj and zk = xk/ok standardized variables, and‘namlng the

slope in this case r,

5k we obtain

12




il

o b s

At

[EPE.

Res X, . . .
§i 0 ki - . _Jdk ki °j 3 =
- = P, — or R, = s 1= 1,...,N.
a, ko ? "1 [
5 1 ] %
From this follows
r. *0, o,
a = K J . op p. = aX,
g k c
X 3
and hence,
I I I
KaoXy o KX o ZssZos
{=p i ki 9 _in ]lxkl o im ji%ki
rfk = 2 ¢ —_ = = ¥ .
ch Uj. Nojck

P is called Pearson's product-moment correlation coefficient between

the standardized variables Zj and Zye

2.3 TYPES OF CORRELATION COEFFICIENTS - BIVARIATE
In Section 2.2 we have derived Pearson's product-moment correlation

coefficient. Besides this correlation coefficient there exist still

other correlation coefficients, partly derivations from Pearson's r

to take care of a specific nature of the variables.
In the present section we want to summarize most of the‘important

correlation coefficients. We shall do this in a systematic way. So we

A, Kendall's General I'-correlation Coefficient, from

shall define in
3 Pearson's

‘which 1. Kendall's t-, 2, Spearman's p-, and also

r-correlation Coefficients can be derived as special cases.
3, Correlation Coefficients for

Next we shall consider in
Dichotomized Variables (i.e. variables which are given by their

frequencies in two classes). We shall discuss in 1  The Biserial

Correlation Coefficient (a correlation coefficient for two variables,

of which one is dichotomous and one has quantitative scores) in

2. The ¢-coefficient (a correlation coefficient for two variables,

B
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which are both truely dichotomous) and in 3. The Tetrachoric

Correlation Coefficient (a coefficient for two variables which are both

dichotomized from underlying normal and continuous distributions).
In C. we sball briefly consider Miscellaneous Correlation

Coefficients by referring for the most part to some specific papers.
These coefficients will be 1, The Contingency Coefficient, 2, Yule's

Coefficient of Association and Yule's Coefficient of Colligation, and

3 .Thorndike's Median Ratio Coefficient of Correlation.

Part D. then presents Examples to the aforementioned correlation
coefficients.

Our discussion of all correlation coefficients will be very brief,
mostly only a statement of the assumptions and of te basic definition., For
standard error formulas and cerrection formulas one s referrad to the
references. .

The answer to'the question what correlation coefficient one should
-apply in a specific situation is given by the assumptions of the single

coefficients, which are different for each coefficient.

A. Kendall's General I'-correlation Coefficient

In the following we will consider the definition of the so-called

Kendall's general T-correlation coefficient (Reference 3). We will

state the necessary assumptions, the definition, and then we will derive
three correlations coefficients from this general correlation coefficient,
namely (1) Kendall's t-correlation coefficient.,

(2) spearman's p-correlation coefficient.

(3) Pearson's product-moment correlation coefficient r.

Assumptions: A sample of N objects (subjects, individuals,

observations, measurements) is considered relative to two properties
(continuous variables) X and Y, exhibiting values Xl,...,XN
and Yl""’YN according to X and Y. To any pair of individuals {
and j we will allot an X-score, denoted by aij and a Y-score bi"

subject to aij = -aji’ bij = -bji.

14
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Definition 2.1: Kendall's general T-correlation coefficient is

defined as

N
) a b
r ij= Y

with aij =0 if i=73.
Now let us adopt three special methods of scoring and derive
Kendall's t-correlation coefficient, Spearman's p-correlation coefficient,

and Pearson's product-moment correlation coefficient r.

"1, Kendall's t-correlation Coefficient

Assumgtiéns: Suppose the values Xx""’xN are ranks, where we
adopt the following definition for the term rank:

Definition 2.2: If N objects are arranged in order according to

some property, which they all possess in a varying degree, the objects

‘are said to be ranked. Each object has-a rank, expressed as a natural

number between 1 and N.
Denote them by pi""'PN' Correspondingly denote the ranks Yl”"’YN
by ql,..;,qN.' Consider the pair of individuals i and j. Choose the

following scores:

a,, = 1, if p, <p. b,, = 1, if p,

.. < p.
ij i j ij i 3j
and :
aij = -1, if Py > pj bij = -1, if pi > pj'

15




Considering then the denominator in

)
a.,b
. o ij
r i 9 H ,
I a2, 1w
as b
R ENREER S
Wwe observe
g a?. = number of terms a = =
i,5=1 ij , ij (N - 2)1
and
7o
bs, = N(N - 1).
30
Therefore we obtain
denominator = VN(N - 1) N(N - 1) = N(N - 1),

Considéring the numerator, we observe that

g
a,.b. = 28,
52 13743

i,

where S 1is the total score (sum of number of (+1)-scores and number
of (-1)-scores), twice because any given pair (i, j) occurs once as

(i, j) and once as (j, i) in the summation.

N(N - 1)

We therefore obtain

Kendall's t-—correlation coefficient, denoting, I' by T, as

- 28
TP RN -D

16

e e Sy oA o w4 e e T R




2. Spearman's p-correlation Coefficient

(Other names: -Spearmah's rank correlation, Spearman's rank

difference method)

Assumption: Choose the following'metbod_of scoring:

85 %P5~ P
! . i’j = 1,--.,“ .

b.. = qj-qi

1]»
We héve
N N
I al, = ] b2
fi=0 M gm0 M
or
JETRE I
(p; ~p;)% = (e, - q.)% .
= 3 iy 37
Then
)
(ps - p:)(a, - q.)
r i.,j-'-l 1 1 3 1
TR
. (ps - p:) : (q, - q;)
i,j=1 3 "t i
N Co
(p: - p:)q. - q.)
)
(p, - p.)?
=1 1 %

17




- -8 !ﬂ Lim
e

‘ )2’ ’f ( )
D p; - py)a: - 4
g3

P o N
©e(a? = ) (pg - q1)2
Lo i=1

‘ ‘and f_hefefore

(R k3

2
Ps
=1t

)

N
121 Pi% 7

o}

13 I
pia; + P.q,

b g5 33 g g B
N N

) izl izl (pyay * P33y
R

2N p:q; = 2 ] Qs
Tt S R T = S

N 2
N
2N § p.q; -2 [— 1+ N)]
qe1 YR 2

N 2
N § opgeg - %— 1+ M2,
i=1

) ‘Dén'qet\e by S(d) the sum of the differences Pp; < d;» i = 1yee05Ne

i p? % % 2
pf -~ 2 piq; + q$
1 i=1 04y ™t

a%) .

‘He‘ “therefore obtain for the numerator

*

18
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2N

» 2
p2 - NS(4?) - %— a+wne
i

1

[ e -1

.
o~
o~
”~~
el
i
]
el
e
S
~~
0
[
|
O
~
"

~
|

= ;—NZ(NZ ~ 1) - Ns(a?) .

Considering now the denominator

N » N N N N N N )
Z (p, ~ Pi)z = Z z sz -2 ): Pjpi + .z Z Pi
. i=1 1 i=1 §=1 i=1 §=1 i=1 j=1
. : : SN ] N
: ' = 2N 2 P§’2 2 Pi Z pj
: izl i=1 * =1 3
Fop ol
= 2N ps - 2 P
j=1 j=1 *
1 N 12
= 2N a—N(N+l)(2N+1_) -2 5—(1+N)
I PN
= G N2(N 1) .
Thus
2 N2(N2 - 1) - NS(d2)
T = .
%NZ(NZ -1)

Denoting I by p, we obtain

_ 8s(d?)

p = 1
N(NZ - 1)

3. Pearson's Product-moment Correlation Coefficient r

i : .. = X, - X,
Assumptions all 5 1
ij 3 i

19




Then -

N

N
121 jzl (% = X0y - 1)
T T E L
R A (X, - Xx.) (y, - V,)
CoiAlmgn 3 Y gy 3

B Il 1] I 1
LY XY, - X.Y, - XY, + X, Y
- i=l j=1 373 i=l j=1 I o501 it

MIs ot fm Ll Lo
P X2 -2 XX, + Xzl Y. - Y,)
Sooplingn T Gngn T ga g T imgn 3

A AR AL
Y, - Y ‘
i=ljé1 i 1)

N
RS
E—- 7%
r = N
N N
1w \(I=®
j:]_ ]-— j=1 -7
N N

20




where

"
o]

and

The product-moment correlation coefficient is mostly considered with

standardized variables, that is with zero mean and unit variance of the

variables, To achieve this

- X -7 |
N N N N
X, : Xs )
igl BYJ_fjlej_?jzl 3+-§ *
= N N : _N
N N N
1z x§ ) X,X I Y§
\ J'-‘kl{ -2 J=lN + 72 J=$ .23
\ - C o

1]

. Let
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%
g = »
Y
Z = :[_'
§ °xj
and
Zj' = ;j— .
Y
Then
N
)‘,xjyj 15
=] —— X,y
‘i__N.__..-\rx _ o gh
e V(L 1 )L
R B S wfli=a 3 {551 3
N \ N \ N N
)
X.y
. a1 373
No, ©
‘xjvj
N
{z).z;
= 971
= J__N__. .

Remarks: Depending on the method of scoring the difference
between the observations i and J for one variable, one obtains from

Kendall's general T'-correlation coefficient the t~, p-p and r-coefficient.

22




The scoring for 1 is therein the simplest one, assigninga 1 or -1
to this difference, thus not looking at all on how far apart the two
observations are. - The scoring for .p is more involved, taking into
account the actual difference of the observations by way of their ranking
difference. ‘For this reason’ p can be considered as the product-moment
correlation»cpefficient between ranks, Scoring for r takes into
account all the information by way of the actual difference between the
measurements . : ' “ »

The choice of either one of the coefficients will depend on the.
data available. If actual measuréments for continuous variables'are
available r is pfeferable to p and 1t. If only datd in the form of
ranks are available, p is preferable to. T.

Pearson's product-moment correlation coefficient is the most
important correlation coefficient for factor analysis, since its
assumptions--rectilinearity and continuity of the variables, made for
the derivation of this coefficient--are the ones which_are mostly

fulfilled by the_variables involved in factor analysis.

B. Correlation Coefficients for Dichotomized Variables

1. The Biserial Correlation Coefficient

- Assumptions: Let Xj and Xk. be two variables. Consider one
of them, say xj, as dichotomous (or being reduced to dichotomy) under
the assumption though, that it is really continuous, while we have only
categorical information. Assume further that fhe‘dichotomized variable
has a normal distribution, that the whole sample distribution is present,
and that the two tails of -the distribution fit togethef into a whole
normal distribution, Looking only upon the two tails would make the
coefficient, which will now be defined, too high. Consider the second
variable Xk as having quantitative scores, no assumptioﬁ made about its

distribution. Assume a sample size of at least 50.

Denote the two categories of Xj by le and ij. Let N be

the total number of individuals, the sum of the number of individuals

N, for X. and of the number of individuals N_  for X. .
1 j1 v 2 J2

23




Definition 2.3: The biserial correlation coefficient is deflined

as

M -M
r:—P__E_P.
%

where the following notation is adopted (Reference 4):

Hp = the meanscore on Xj of the individuals in category

or X,

j2° whichever is the larger

le

¥, = the meanscore on xj of the individuals in le
and sz together

o, = the standard deviation of X:i for the entire distribution
"l Nz .
P = the proportion ¥ °F §oo whichever is corresponding

to the category with the higher mean on Xj

Y = the ordinate at the point of truncation of the normal
distribution

Remarks:

a. If the dichotomizad variable cannot be assumed to be
continuous and normally distributed, Richardson and Stalnaker (Reference 5)
suggest another form of the biserial correlation coefficient.

b,  If one wants to look only upon the two tails of the distribution,
which is often wanted in educational and sociological research, in
other words, if one wants to look upon so-called "widespread classes",
Peters and Van Voorhis (Reference 6) suggest a "biserial correlation
coefficient from widespread classes",

¢. Pearson (Reference 7) suggests a coefficient, called biserial
eta, based on the assumption that one variable is given by alternative

and the other by multiple categories,

24




2. The ¢-coefficient

(Other name: Four-point Coefficient)

Assumptions: The two variables under consideration have to be
truly dichotomcus., Let . Xj and Xk be two variables with categories:
le, ij and Xkl’ sz respectively. Then e;tablish the following
table of frequencies a, b, ¢, d. Let the four cells be consistent

with the quadrants of a coordinate system, represented by the signs.

S X 1 (2x2-fold table) ;
“* Xy
L
+X.
.XJI a b a+b
X.
]
-X +
atec b+ d atbtc+d=N :
' N = number of measurements, f
observations H
= total frequency i
Example
Xk = sex
Xk1=women Xk2=men
le = employed a b a+hb
Xj = employment
- - ij = unemployed c 4 c+d
8
a+e : b+d N

number of employed women
number of employed men
number of women and men, employed or unemployed.

o | »

e.g.

Zoe
W




Definition 2.4: The ¢-coefficient is defined as

(be) - (ad) ;
/{a + b)(c + d)(a + c)(b + d)

k
actually continuous, the ¢-coefficient is to be considered as an estimate

a., If we assume Xj and X, to be dichotomous, while they are i

‘of Pearson's r. In order to obtain a good estimate of r a table

(Reference 8) is available which gives a value k, by which ¢ has to
be divided. . _ .

In general ¢ divided by k corresponds very closely to
tetrachoric r (the correlation coefficient which is customarily '
applied to dichotomized, but really continuous data). So, if computing
diagrams for tetrachoric r are not available, %- might be the most
approximate measure for tetrachoric r,

b. In order to cut out the influence of extreme values,‘which go
into the computation of the ¢-coefficient, originating from extreme cuts
in the distribution, ¢ is better divided by the maximum possible value
consistent with the given marginal values, ¢ max. ¢ divided by ) -
¢ max is probably the best correlation coefficient in use for

dichotomized variables *

3. The Tetrachoric Correlation Coefficient

Assumptions: Let X; and X, be the two variables under

k )
consideration. Assume that the data for both variables are in teras of
dichotomies, but that both variables are really continuous and normal

in distribution.

Definition of the Coefficient: The statistical considerations

necessary for the derivation of the tetrachoric correlation coefficient
are extensive, We will state here two of the formulas, used to compute -
the coefficient,

Again denote the two categories of Xj by le, ij and the .
categories of X, by X X a, b, ¢, d are notations for

k k1’ “k2°

frequencies.

# E. E. Cureton, Note on ¢/¢ max. Psychometrika, 1959, 24, p.89,
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The statistical derivation terminates in a formula involving
* double integration, which can be solved for the tetrachoric correlation
‘coefficient .r, ‘ylelding a very compiicated formula for r (Reference 9).-
In putting the restriction upon the problem of cutting the
_distributions at the mean, the following formulé for the tetfachoric
correlation coefficient can be arrived at:

r = sin 2n £22—3-2§2~, N = a+b+c+d.

N2

The assumption of equal dichotomies might be a crude one for certain
problems, So, Pearson develops (Réference 9) empifical formulas that
give approximately correct vr’é, ‘the mean error in 15 trials being
less than uvper cent.  The simplest of thése approximate formulas is

the following one

where no restriction is put on the point of dichotomy. H. W. Eber
(Reference 10) uses this formula for computing a correlation matrix
for 3,000 variables.

- Remarks ‘
a. In order to facilitate the labor involved in computing
. tetrachoric correlation coefficients, Chesire, Saffir, and Thurstone

(Reference 11) prepared a set of computing ~diagrams. These diagrams

o | ’




are advisable to be used whenever the coefficient is not required to
be of high accuracy. Other diagrams are designed by Hamilton
(Reference 12).

b. As for the biserial correlation coefficient Peters and
Von Voorhis (Reference 6) develop a tetrachoric correlation coefficient
from widespread classes, .

c. The tetrachoric correlation coefficient is one of the
coefficients for factor analysis more often used besides the product-
moment coefficients. To use this coefficient is thereby a necessary
condition, if the data are riportud in dichotomies only. If. the
dichotomies are derived, though, by cutting continuous data at some
point, it should be strongly considered to employ product-moment
coefficients instead, since the tetrachoric correlation technique loses
some of the available information.

C. Miscellaneocus Correlation Coefficients

1. The Contingency Coefficient

The contingency coefficient is applied when variables Xi and
xk both can be classified into two or more categories, and when these
categories are not quantitative but qualitative. The formula of the
contingency coefficient makes use of the chi-square statistie,

Definition 2.5: The contingency coefficient is defined as

[

¢ =
'\jNi'xz

Under certain conditions C is equivalent to Pearson's product-

moment correlation coefficient. If the variables are continuous,

correction formulas exist, see References 13, 14, and 15.

2. Yule's Coefficlent of Association and Yule's Coefficient

of Colligation

In connection with the ¢-correlation coefficient Yule (Reference 16)

considers two correlation coefficients, based on a four-fold table:
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Definition 2.6: Yule's coefficient of association is defined as

be -~ ad
ad + bc

Definition 2.7: . Yule's. coefficient of colligation is defined as

e - /a3
Yad + vbe

" The coefficient is equal to ¢, if the four-fold table is Mequalized",
H “that is ’ '

Yad | /¢
Bhe | /ad

3. fhorndike's Meaian Ratio Coefficient of Correlation

Thorndike (References 17 and 18) developed a correlafioﬁ coefficient,

which, under certain conditions (Kelley, Reference 13).is egjual to the
product-moment correlation coefficient. -
Let the variables 'xj “and Xy be deviates from the mean and let

dj. and o, be corresponding standard deviations., Supposing the relation

k
of variables x. and R to be rectilinear the coefficient of correla-
tion’defined as follows, represents an inference about the general drift

of the relation.

Definition 2,8:

Thorndike's median ratio coefficient of correlation is defined as

r = median of the 2N ratios

29
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and

%.1/%

———— i=1 N
X../0. »1 prree T
Jl/]

For simplifying computing formulas see Thorndike (Reference 17). See

also Kelley (Reference 13),

D. Examgles

"1, Example for Kendall's t-correlation Coefficient

The coefficient is

Before computing the coefficient on the basis of the data in Tabie 1,
we have to consider briefly how to take care of ties in the data. Let
t{u) be the number of equally ranked individuals, then: there are '
% t(t-1) pairs to take care of,

Denote by T=

N

I t(t-1)
t

(=
[
o=

z ‘u(U"l) »
t

where Z means summation over all sets of ties.

Then ° t is computed as

s
T =
T 1
\[-2- N(N-1) - T \/ ZN(N-1) - v

This is the appropriate form of 1 if ties arise in the data, The
computation will be clear from the example. The formula is stated
and discussed by Kendall (Reference 3).
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» Table 1

'Measurements for Two Variables--Weight and Height on 10 Individuals®

- d = rank
Individual Ranks Weight = X1 Ranks Height = X2 difference 42

A 165,00 8 177.80 -2 y
3 1 189,50 1 187.60 0 0
) < 10 " 128,00 110 169.00 0 0
D 9 184.00 4, 5% 181.50 . 4.5 20.25
- E 7 156.50 7 179.70 0 0
F 8 145.50 9 172.0 . -1 1
@ 5 166.00  4.5%  181.50 0.5 - 0.25
H 3 178.00 2 185.30 B 1
I o2 ‘182,50 6 181,00 -y i 16
. J u 167,50 3 182,35 1 1
% The measurements for the 10 1nd1v1duals were picked randomly from a
set of measurements for 130 md:.v:Lduals. )
L Individuals D and G are tied for ranks 4% and 5. It is common
use to rank each individual by the average of the tied ranks.
N
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To find S we have to compare each individual i with each individ-

wal J. We score

ai.j 1, if p; ¢ pj

a

13 = -1, if p; pj
aij=0,i.f pi=Pj .
Listing the results, alsoc for biii , We obtain:

s

Individual i Compared Scores Individual i Compared
with Individual j Multiplied with individual j where
isJ = A,B,...,J for Xl i,j = AByeesyd for X,

-1.
1
-1
-1
1
-1
-1

-1

1 s et e e b et bt e b o e e R R

1
1
1
1
-1
-1
-1
-1
1

-1
-1
1

T

-1

-1
-1
-1
-1

1
1
1
1
1
1
-1
-1
-1
-1
-1
-1
-1 ~1
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thdividual 1 Compared Scores Individual i Compared

with Individual j Multiplied with individual j where
is3 = A,Byaes,d for Xl ig = A.B,ee.,d for X2

D with E 1 -1 -1

F ~1 -1 1

G -1 0 0

H -1 1 - -1

1 -1 1 -1

- J -1 -1 1

E with F .1 1 -1

G ~1 1 -1

H -1 1 -1

1 L -1 1 - =1

J -1 1 -1
F with G -1 1 -1

H -1 1 -1

I -1 1 -1

J -1 1 -1
G with H -1 1 -1

I -1 -~ 1

J -1 1 -1
H with I -1 -1 1

J 1 1 1
I with J 1 -1 -}
Then

S = (Sum of (+1)-scores) ~ (sum of (~1)-scores)
=3 -8 = 28

It is

T = 0, there are no ties in x1

-%—(2'1) = 1 , there is one tie in 'Xz .

e
u

Then we obtain

‘ ' 28
P A 1 1
\[2- 10(10-1)-0 \[-5 10(10-1)-1

B




2. Example for Spearman's p-Correlation Coefficient

The coefficient is

6s(a2)
N(N2-1)

p:l-

Also in Spearman's p-oorrelation coefficient we have to take care of
ties in the renking of the two correlated variables. ‘yyify th: ties
by t and u and define

1 2,
1z t(t2-t)

-3
]

<
n

%5 u(u2-u)
u

Then Kendall obtains two equations, deducing them from the general [P~
coefficient:

_6(S(d)2 + T + )
N(NZ - 1)

p =1

(1)
or

%—u(nz-l) -S(&?) -T -0
o = . @

\[[%_ N(u2-1)-h'] [% N(N2-1>-20]

For our data of Table 1 we obtain

)
1 ,02.0y=1
17 2(2%-2) = 3 .
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P

Then for Equation 1

o s‘u35+§)

990

= 0,734 .

vKuation 2 yiélds

: %(géoi) - ué.s -% ‘
-\[[%'(990) -'o] [% (9_90) - %—]

0.736

o=

3. Example for Pearson's Product-Moment Correlation Coe;fxcxent r

We shall use the following form of ‘the coefficient

N
):Xij |
=1 -
—y— % ¥
r= 7 2
(TR
N N
5 =1 3=

We again will use the data from Table i:‘

Therefore
Then one computes
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10 X, X

] 2 = 29262.37

j=1
WX,
X = §J Ll:162.25, X2 = 26325.06
174 10 ;

j=1

10 X
X = § -2:179.87, %2 = 32353.21
2 z 10 2

351

10 x2

) -—i—g—= 26652,02

351

10 x2

) —}3—= 32378.72

j:l i

and one obtains by substituting these values in the formula for wr.
r = 0.859

i, Exampie for the Biserial Correlation Coefficient

Mo M (e
r= o, Y

We shall use the coefficient to determine the relation between the

variable Xx = size of family and variable 'X2 = tendency of children
to leave school before the age of eighteen. The data of X2 ar: given
by the two categories: sz = children, who remained in school according
to the size of family, X__ = children who left school according to the

22
size of family. The data are laid out in Table 2.
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Taole 2

Data for an Example of the Biserial Correlation Coefficient

Size of Family -  Children remaining Children left , Total

i f .
xl in School X21 school 'xzz ‘ ( 15

(Cl§S$ Marks Xj) (Frequencies flj) (Frequencies fzj) + fzil

12 2 2
11 4 3 7
10 4 2 6
9 L 8 12
8 20 3 23
7 10 17 27
[ 24 12 36
.5 18 18 36
y 30 10 40
3 34 12 46
2 34 10 Ly
1 16 5 21
200 100 300

The example is from Reference 6 and the measures are from
Reference 19,
Let us first compute the meanscore on X2 in categories 'le,

xzz’ and lef )(22 . Using the mean formula for grouped data:
12 £ X, . 11 bess .
T =z 133 . 2712 + 411+ +161=911+=“.57
21 .=, 200 - 200 -200
=1 »
_ 12 £,.X: . 10 benn e B ‘
X = 2§ 3 . 311+ 2°10 + +5:1 531 _ o4
22 L. 100 100 100
j=1
T 12 (flL+ fzj)xi 22712 + 7711 -0 +21°1 _ 1ub5 _ 4. 82
21 22 . 300 300 T~ 7300 Tt

=1
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Such that

M = 5.31

=
"

4,82

How we compute the standard deviation of x2 “for le + xzz ». We use

again the formula for grouped data:

12 - :
e
izl (flj + fzi)(xj X, * X))
% = 300
/22 - 4.82)% ¥ 7011 - 8.82)2 b0t 20Q0 - 4.82)?
300
= 2,57
and
N
2 _ 100 _
p = N—- = 36—0- = 0.33

Then y = 0.3635 , as taken from a table by Peters and Van Voorhis
(Reference 6),

He now compute pr as:

r =

5.31 - 4,82 0.333
2,57 0.3635

) = 0.175

38




kD s ES

S. Example for the ¢-coefficient.

The ¢~coefficient is computed from a four-fold tables as are the
tetrachoric correlation coefficient and Yule's two coefficients, the
contingency coefficieﬁf can be computed from a four-fold or a manifold
table, We will now demonstrate all above mentioned coefficients from
an identical four-fold teble, which will only be interpreted differently
for the single coefficient"under‘cbnsideration, in order to allow for

the special assumptions of this coefficient.

The 4-coefficient

bc:- ad
Y{a+b) (c+d)(a+tc)(b+ d

¢ =

we will lay out the data in Table 3.

Table 3, Data for an Example of the ¢-coefficient

X
X1 2 X2
X 1a= 685 b = 849 a+b = 1514
X 11 -
1 X, |° = 1281 d = 205 c+ d= 1486
at+ c = 13u6 b+d=1054f a+b+c+d=N
= 3000

An interpretation is given: We want to determine the relationship of
employment status (Xl) and sex classification (xz), where both X, and
X2 are given by two categories Xll = being employed, Xlz = being

unemployed, X, , = women, X men, So, e.g., a = 665 represents the

number of women, questioned'in a sample of 3000 men and women (:yut women,
1055 men), who were employed out of the 1946 women in the sample. Note,

that both variables, sex and employment, are truely dichotomous,

We obtain
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849 » 1281 - 665 ¢ 205

Y1514 » 1486 + 1054 - 1946

Qus3 .

That is,the relation between sex classification and employment status is
a positive one. That means, for the data under consideration being a -
man and being employed are positively related.

Connected to the ¢-coefficient are Yule's two coéfficients. Their
computation from the data in Table 3 gives the following results:

Yule's Coefficient of Association:

bec - ad
ad + bc

849 + 1281 - 665 ¢ 205
849 + 1281 + 665 ¢ 205

0.776 .

Yule's Coefficient of Colligation:

e - /ad /849 « 1281 - VBB5 « 205
w = ‘= -
vad ¢+ bc /849 + 1281 + V665 ¢+ 205
= 0.477 .

6. Example for the Tetrachoric Correlation Coefficient

We will use the cosine-formula of the coefficient

~ vad | -
r=zcos { y —————— .
/ad + /bc '
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and'apply it to the data of Table 3, As an interpretation of the four-
fold table, consider the case that we have a sample of 3000 teachers
divided:into successful and unsuccessful ones and that we have infor-
mation about how many of the successful and how many of the unsuccessful
feacheré have taken courses in pedagogy'beyond 6 hours or less 6 hours.
- We want to know the relationship of teacher success and taking courses

in pedagogy.

We set .
X = teacher success--xll'= "successful
X12 = unsuccessful
x2j= courses in pedagogy--xz‘ = beyona 6 hours
| X,, -= less than 6 hours.

22

Note, that one can think of both variables as being continuous, though
they are represented as.dichotomous.

e /865 +_ 205
r = Cos
/665 + 205 + /849 + 1281
= 0.6811

The tetrachoric correlation éoefficient computed from the tables of
Pearson and his students has thé value r = 0,6633 for the above data

Chesire, Saffir and Thurstone compute a value of r = 0,.6638 for
the considered data by their computing diagrams.

7. __Example for the Contingency Coefficient
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The coefficient
C = \’__X__f
i+

could be applied to determine relationship between two variables, each
described in more than two categories. Let the variables, for example,
be eye color of fathers (X;) and eie color of sons (xi) . Each
variable may be divided in many categories: xll and Xil = brown
X, and X,, =grey, X;,and X,, =blue and so forth. We will apply
the coefficient, though, to data reported in a four-fold table, thereby
assuming ‘that each variable above has only two categories. We will use
the data reported in Table 3. :

We will make use of a simple computing formula for x2 for the case

of a four-fold iu.sle:

2 _ N(ad - bC)z .
" {at+tb)(ctd)(atc)(b+ad) °*

X

proved for example in Reference 20.

HWe obtain

c 2\/7 N(ad-be)? N N(ad-bc)?
(atb)(ctd)(atc) (b d) ( _* (atb)(c+d)(atc)(b+d)

-\ N(ad-be)?
N(atb)(ctd)(atc)(b+d) + H(ad-be)?

-849 + 1281 + 665 « 205 . - 0.405
/1514 - 1486 ¢ 1054 » 1946

42




8. Example for Thorndike's Median Ratio Coefficient of Correlation

"r = median of the 2N nratios

x.i/o.
xi/%
and
R, . /O .
Xkl X Y i-= l,.-'-,N .
X.:/0
NEA
* . We want to apply the coefficient to the data of Tablé 1. .
_ Then
X, ='weight
x, = height, and N =10

We first have to set x

X_ ., L
1i* T2i?
tive means. The means are. §l = 162.25 and X, = 179.87. Subtracting
from all x ,, i = 1,...,10 and i’z from x,:, 1 = 1,...,10, we can
.compute the standard deviations as - '
io xfi %o xg_
g, = e 9, = —£ .
1 & TI0 2 V.., 10
to get
01 = 18.08
» 02 = 5-22 .
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The ratios y = xlilal and z = xzi/o2 . i;= 1,.4.,10, are formed
next. And then y/z and z/y are considered. Their median furnishes
Thorndike's correlation coefficient, It is computed as r = 0.872 from
the data of Table 1. Note its rather good agreement with Pearson's
preduct moment r = 0,859,

2.4 GEOMETRIC INTERFRETATION OF PEARSON'S PRODUCT-MOMENT CORRELATION

COEFFICIENT ' ‘

In this section we want to interpret the correlation coefficient
(if we talk about the correlation coefficient, we mean Pearson's product-
moment correlation coefficient) in view of,its geometric aspects with
respect to the factor model,

Let us then assume an N-dimensional Euclidean space with a rectan-
gular Cartesian Coordinate System, whose origin is denoted by 0:(0,...,0)
and whose unit points are denoted by Elz(l,o,...,O),...,EN:(O,...,0,1).
Let us interpret the n variables Zj as points represented in this
system, the points and their coordinates denoted by
Zj:(zjl”"’zjﬂ) = zj:(Zji). Such a representation for each of the n
variables can be called a vector representation, each 2 heing named
a vector., Let, further on, the N 1lines ozji (i=1,...,N), each passing
through the origin and one of the unit points be called coordinate axes.

Now let us make the following definitions:

Definition 2,8: For any two points Zj:(Zjl,...;ZjN) and
Zk:(zkl""’sz) their distance is defined by

, N
n(zjzk) = 121 (zji - zki)2 .

Lf the distance of a point Zj from the zero point is considered, it iz
called the norm denoted by

’

N
D(0Z,) = = 2
(o J) D(Zj) ,/izl 2%
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Definition 2.10: Let the nomm D(OZJ) be denoted by pj. Then the
angles which the line OZ makes with the axes, denoted by
= ¥Z. OZ 3o are called the direction angles of the line and thelr »

31 3
cosines are called the direction cosines, denoted by Aji = cos aji.

From the definition it follows that xji = cos 931 = Zji/pj,i=l,...,N.
How the following interesting impiications can be made.
a, From '
. = D(0Z.) = Z¢.
P5 3) , i§1 i
follows
2 lg 2
ps = 25,
-
Since
: 22, . g
A2, = os2 0 = At i=1
Aji cos ji > s i=l,00e N
pe .
. ]
it follows
y 2
, N N 22, 121 45
'Z Aji = igl cos e].i Zl —L'z = T———— =1 .
5 1oz

gy Ot

That is, the sum of the squares of the direction cosines of a line in

N-space is equal to unity,

b. Next, denote by Aji and i the direction cosines of the

vectors Zj and Zk'




Then

A.. =
P
3 pj

and

.
b d
1

-
[
n
)

-

.

-

-

-
=
-

ki~

We are now interested in the angle of separation of two lines in N-space,
precisely said, in the cosine of this angle. We can derive an appropriate
formula by using the direction cosine formulas and by referring to the
trigonometric properties of a triangle in the plane, visualizing that, if
two lines meet in a point, a plane can be drawn thtéugh the point contain-
iﬁg‘the two lines, If the two lines do not meet in a point, a line can be
drawn parallel to one of them, so that the line and the parallel form the
angle we are interested in.

Denote the vertex of the angle by P:(pi), the angle by °jk' and
distances as follows: D(sz) = a, D(PZk) = b and D(ijk) = d. Then we
can draw the following picture:

The coordinates of Zj and Zk can be expressed

as
zji =p;t a{ii, i=1,,.4,N,

Z; = Pyt DA, i=l,.. N,
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Then, applying the law of cosines, we obtain

d? = a2 + b2 - 2ab coé'ojk' _ ’ - (3)

Applying the distance formula we obtain

N
2 - 2 - - 2
@ = (D(252,)) Z (255 = 3;)
i=1
N )
z .g [lpy + arsy) = (py + BA,)]
i=1
2 % 2 2 g 2 ' ‘i k
= g A2, + b A2, - 2ab AsaA s
i=1 ji is1 ki is1 jiTki
2 2 ¥ '
= a2 + b2 - 2ab 121 Mitki e B (4)

This implies by identification of terms In Lquations 3 and 4:

N
cos ¢. = ¥ AL
jk 151 jiki
That is, the cosine of the angle of separation of two lines is given by
the inner product of corresponding direction cosine vectors (Ajl,...,kju)
and (Akl,...,kkﬂ).

c. Since

2.. .
Aji = ;ll s 131,...,N

A, = —= , izl,l.. N,

ki
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we obtain
N N 2
i
cos by = I Ashg = L 4 11 .
Je gz I g2y eyey
It is
. = z?
’3 \Lzl 3
= N ,
since °.
= standard deviation
= 1, for standardized variables Zj.
Thus
N Z,.2 N 2,.2 . .
ik i7ki
cos ¢, = )} L—=== ¥ =P,y Js KELyeee,ne
]k i:l '-]Dk i=1 N Jk

These considerations yield the result, that the coefficient of correla-
tion between two standardized variables is the cosine of the angle
between their vectors in il-space,

d. Our geometric interpretation of a correlation coefficient, so
far, started with the consideration of the given raw data, namely the
n points Zj:(Zji) in N-space. Then the cosine of the angle between
two such vectors in N-space constitutes the coefficient of .correlation

between two variables.

48

e




e L

A TE V0 L LY 2L XK TR T R T T A S Ty,

Now we' assume a correlation matrix R, computed from the raw data,
and a factorization of this correlation matrix., According to the mathe-
matical model underlying factor analysis each variable Zj is now
expressible by

L. - i 3=

Zj alelb + aszz +...+aijm + ajUj, J=l,e0e 40,

where the loadings a..(i:l,...,m) were obtaihed from the factorization.

In this representatlon the n vectors Z " are considered in the space

of m .common factors and n unique factors the total-factor space,

' The vector representation of 2. (] 1,...,n) in this space is denoted by

(a s & 0,..., 0 A,y Ohenny 0), the a..(1 1,...,m) denoting
j1 ] 11

]2,..., ]m

. the coordxnates of Z% with respect to the common~factor axes, the 0 and -

) aj " denoting the coordinates of 2! with respect to the unique-factor

axes. . We now assume, that the system of common- and unique-factor axes is
rectangular, that is, all factors are mutually orthogonal. Then the angle
of separation of two vectors Z:'i and Zk’ represented in this system, is,

according to the. formula discussed in (b)

min Z 1%i
cos ¢%, = At —1———— 33 sk=1ys0. 00
kg5 Jl it PyPx
Since
¥ 2 2 :
pj = izl aji + gj =3l’ for ]=l,...,§,
(Since
7 2 ‘a2
as. + a% = total variance)
izl o
it follows that _
m . . ‘
s ' = . = = )
cos 4k, Z ajiakl el sjsk=1,... 0.
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Thus we obtain that the reproduced correlation coefficient (from the
pattern of loadings) of any two variables Zg, Zi is equal to the cosine
of the angle between their vectors in the total-factor space,

e. Our last consideration informed us about how a correlation
coefficient is described if the variables are assumed to be represented
in the total-factor space.

Finally, in factor analysis one usually does not consider the total-

factor space but the space of m common factors only, that is, one regards

the n vectors contained in an n-dimensional space, determined by the m
factors. To obtain this m-dimensional space one considers the orthogonal
projections of the n vectors from the total-factor space into the ccumorni-
Tactnr sace o” @ dimansions and defines these orthogonal projections to be
the vectors representing the variables in this space, denoted by"

Zgi(ajl, ajz""’ajm)’ j=l,....n.‘

We assume " a rectangular coordinate system to be set up in the common-
factor space.
Considering now the angle of separation of two vectors Zg and Zﬁ,

represented in this space, one obtains:

m moa..a. ,
cos o = 121 Mtk © izl °5Px To Kobeeeests
where
T 2
= = 2 = iz
05 igl al; «ﬁ: his 3715000y
(with h% = communality),
so that
? as;a .
cos o= 22
kg By




and from (d)i

* . cos Jk ER T rgk, Js k=1,.0. 40,

Hence the cosine of the angle between two vectors which represent variables
in the common-factor space is equal to the reproduced correlation coeffi-
cient, divided by the product of the square roots of the communalities of

these two variables. We may call the obtained correlation coefficients

v rgk "the correlation coefficient between Zg and Zg‘corrected for unique-
ness", since only if the two variables do not have any unique variance
‘ : would rgk be equal to the reproduced‘correlation’coefficient r;k.

2.5 SIGNIFICANCE AND RELIABILITY OF PEARSON'S PRODUCT—MOMLNP CORRLLATION
COEFFICIENT

. A statistical consideration that can be made on a Pearscn product--
moment. correlation coefflcxent ”jk is the determination of its statistical
significance. Since statistical significance of rjk is dependent on
sample size N, the following considerations will give us some important
information about this dependence which we shall utelize even more at a
later stage.

Let us first briefly consider what is meant by statistical signifi-
cance., In statistical considerations mostly only sample information is
available, on the basis of which one tries to make decisions about the

population, from which the sample was drawn. The decisions are called

statistical decisions.

In'attempting to reach decisions, one then makes

’assumptions about the population involved.

.These assumptions, which may

or may not be truc, are called statistical hypothesis,

They mostly are

statements about the probability distribution of the population in
question. If we assume a certain hypothesis to be true and tihen find
that results observed in a random sample differ markedly from those,
which we expected under the hypothesis on the basis of pure chance
using sampling theory, we would say that the observed differences' are
* significant. We would then reject the hypothesis, Procedures which
make'it»poss;ble to decide whether to accept or reject a hypothesis or

to determine whether observed samples differ significantly from expected
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results are called tests of hypothesis or tests of significance, When one

tests a hypothesis, the maximum probability with which one is willing to
risk the error of rejecting a hypothesis when it should be accepted is

called the level of significance of the test. Usually a 5% level of

significance is chosen, that means we are 95% confident, that we have

made the right decision in accepting the hypothesis. If e now consider
a sample statistic S and if the sampling of S is approximately nommal,
then we can be confident of finding the mean Mg of the sampling'distpi-
bution of § in the interval S. -~ 2os to S + 2os 95.45% of the time or
in the interval 3 - 1,960, to § + 1.960g 95% of the time. These

S )
intervals are called confidence intervals. Thé end numbers of these

_intervals S t 1.960s are called confidence limits.

We can now proceed considering the statistical significancé of a
correlation coefficient. A correlation coefficient rjk computed from
the measurements on variables Zj and Zk can be considered as an esti-
mate of the true population correlation cqefficient, denoted by pjk‘

The measurements on Zj and Zk, taken as pairs (Zji’ Zki)’ iz1,..0,il,
are considered a sample from the population of all possible such pairs.
Since two variables are involved, the population is called bivariate,

Ye assume that it has a bivariate normal distribution. We are interested

in whether the observed correlation coefficient differs significantly from
an expected result. This obviously depends on the sample size N. The
larger N will be the better will be the estimate of the true population
coefficient by the sample coefficient. Then a statement about the error

or precision of the estimate is called its reliability. In order to find
out about statistical significance of rix» Ve have to test two hypotheses,
namely that pjk is zero or is not zero, To be able to test these hypoth-
esi:s, we have to know the sampling distribution of r,

jk
For the hypothesis pjk = 0, this distribution is symmetric and can be

for each case.

described by a statistic involving Student's t-d’stribution. If pjk £ 0,
the sampling distribution of L% is skewed, Then Fisher's 2-transforma-
tion can be employed to transform the skewed distribution into one which is
approximately normal. Let us express now these considerations mathematical-

ly:
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1. Hypothe;l; pjk = 0:

r., i -2
=
. a2
\/l rjk

has Student's t-distribution with N - 2_degrees of freedom. The hyvoth-

t

esis is accepted at a predetermined level of significance, if, for bjk’

t -is computed to be less than the t-value read from tudent's t-distri-
bution table at the given level of significance .and at given degrees of
freedom. - ' e

2. Hypothesis pjk # 0: The distribufion of ij is ;ransformed

by Fisher's Z~transformation., We obtain:-

1+ r;
= L ik
Z—ZlOge(l-_-l‘jk)
with mean
. J1 + p.
ur,=-l-10g.. ik
rA 2 e l-pjk .
and standard deviation
0, = 1 .
Vil = 3

Within the context we will be especiélly interested to find 95%
confidence limits for rjk' We proceed to do so by first teSt;ng the
hypothesis that for a given correlation coefficient ij tne true
population coefficient pjk ~is zero. If the hypothesis is rejected
we are able to compute confidence limits.

We have learned that we can be 95% confident tc find the mean

Ky in the interval 2 t 1.9602. It is
1 1+ Ty 1
Z t1.960, == log |~—3) ¢ 1,96 —
. Z 2 e {1l - v, e
. jk vy - 3
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which yields the confidence limits -

1 1+ L 1
vy =3 loge (-l-_:—I:L) ¢+ 1,96 ~———— for Ba e
ik Vi -3
* Since
]
! ‘ . = l 1o -—-j—l e k *
i Hz = 7 +9%8, 1- pjk ’ )
we are af)le to find confidence limits for pjk' from : . ;
1+op, 1+ ' :
110 (T_—Jﬁ} = % 10g {-1—_——1’5) £ 1,96 —E— ;
e P 3k e ik A=-3 :
;
1+ p, 1+, |
Log, (r:—l}i) = log (r‘.‘?‘ﬁ’ ta92 —i— . : f
Rk B jk /N -3 :
Since : : . :
X = loge ex . :
1 :
3.92 :
1+ op. l+r, fr—— :
log, G .3 R PV k) s 1eg e N-3 :
1l - p. e l-nr, e .
]k Jk H
Call
3.92 1
. N=3 _ NI : .
then
1+ pjk . 1+ rj_k
T =7 A1) (s)
jk jk )
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and
1+ p,

l+r.. )
i (1 ik )////A(N) 6)
» Py T3k -

from Equation 5 we obtain

) [AG) - 1] + CAQN) + 1rg,

Por = (Sa)
O aw) + 11 + LA - INC
~ from Equation 6 we pbfain
1 1 »
o = [A(NS - 1] * [AZN'S * 1]“jk
jk Tl 1 v
[A(N) * l] ¥ [A(NS -l]rjk
[1 - AGDY + (1 + AW Ir,
= ] (6a)

[1+A00D] + ;1 - A(N)]rjk ‘

Equations 5a and 6a furnish the confidence limits for the correlation
coefficient ij’ whose corresponding population coefficient is pjk.
One is referred to Spiegel (Reference 20) as a reference for this

subsection.

2.6 PEARSON'S PRODUCT-MOMENT CORRELATION COEFFICIENT DiIRIVED FROM

INCOMPLETE DATA

Let us assume that we have n variables and § individuals, on
which observations are taken. It can quite often happen in practice
that, for some reason, observations for a variable can be taken only
for some of the N individuals. There are several ways to compute a
Pearson product-moment correlation coefficient on the basis of a differ-
ent number of observations for each variable. In the following, three
methods are described. Each time the basic formula (in terms of raw

scores):
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I ox..x I x. X
i%1 ji"ki i1 ji is1 ki
- N
rjk- .
Zxr gxﬁ fxT
‘ i i1 ji W\ 1 ki i i1 ki
N N T

is adjusted for the situation of incomplete data by particular means.

1. Method: SRL-Routine for the Computation of pjk'

The correlation coefficient is computed on the basis of simultaneously

existing data points for the two variables Xj and xk.

i=i# i i=zi%
r.. = N* .
.k, - ,
’ ] %2, R .]2 I x2, ) xk.]z
- iz % 4 _ |iz1n 3 i=i% _ lizis
N% T I FE] N

where 'N* is the number of data points, which exist for xj and X

k
simultaneously, The index i* picks from the set

{1,...,4} those
numbers, which are accounted for in W%,

Rewriting the formula above, we obtain

L XgiX 1§i*xji i);“xki

izi%
r - N* N * N# .
13
%2, T X..)2 X2, % .12
'\/izi* i izi* J.‘] \[le ki igi* k‘]
RE3 - N® J N - NE J

_Ye- form the means
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) kxji

- _1..1
xj. 2 =
and
= . Z i kx
xk" = -_—TFF-"

Fov the computation of the means only those observatlons of X] and Xk
are taken into account, where observatxons exist for X] and Xk simulta-
neously.

Then the correlation coefficient formula reduces to

z 2x]1 ki
k] — —
3'_._1__N_r__. - X.% xk*
S 1 (n

Tk T :

L X * 3* g #X

=it = LL__-EM.
- THE T Yy N k

A computer program for the above outlined computations can also be

found in Reference 21, -

2, Method: Computation of r. by Making Use of all Available Data.

jk

A consequence of the first method is that, in~compufing only from
simultaneously existing data poirts for both variables, valuable informa-
tion is neglected, especially in computing the means. ‘The means are based
on smaller data sets than available and may therefore not as precisely
describe the true population means as would be possible by use of all

"available data. Therefore the following method of‘computation of rjk'
which takes into account all available data for the computation of means
and standard deviations, is suggested. ‘

Let

b
n
0
z}j<
P
e
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x
e

x?q
]
Laad e ]
y
-

where N1 accounts for the data points existing for xj. N2 for the
data points of Xy o In both cases summation is done over the set of

existing data points of the variables under consideration.

The correlation coefficient is a dot product of two standardized variables
divided by the number of points taken into consideration. Since the prod-

uct between two points has only meaning if neither of the points is missing,

the summation will be done over the number of simultaneously existing points
(i=i*) and the sum will be divided by N#*, accounting for this number of
points. ‘

izi* (X35 = X0 - %)
r,, =
- jk N*ajak

r. =
Ik
. X, - X,)2 X . - X )2
oy B2 5 \/Z X - X))
H N1l i N2

I x,-% 1
jein Ki k iZin

Y Xey
Y2 XL _ ¥
X3 § 72 " Xk

) Xsi¥ys - ’i('j RITRA “ij'ik

i=i#

n
-

=
E
<
[ ]
=t
gt
1

and
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ki 74
Lywe =Rt

i=i ik L ik
T3k © :
: X2, X2,
_ § At 32 LI
L N1 3 \JL N2 k
. i i :
XX . o
BRI S LIS 3 JL I SR I A T e
;Z.i* N ik K3, "3k T3 Tk 3k
r. =
k .
’ X2, X2,
e LA L.
¢ 3 L N2 k
) ﬁ_fﬁf"t.{.(x - X.%(X - X %)
1o N# j j j k k
rjk = . (8)
X2, X2,
EESPEAN I St -
H i yihe

If N1 = N2, then N* = N1 and N¥ = N2, and X =X * and X, = 4 %,
In this case Equations 7 and 8 are identical.

-3, Method: Substitution for Missing Data Points

Another means one can think of as a solution to the problem of com-

puting r.  from incomplete data is the means of inserting some value

ik .
for the missing data points of the variables. The values, which suggest
themselves for substitution, are the statistical means of the variables.

Since all sums are then taken over N variables the formula
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T )
X X
Txox, -ispdtm M
STt ¥
I‘jk" .
ol [ (Lo
2 x| X X
N 'i T T g=1 K1z Tk
LW — W )

"3

"
=]
!
]

()

jk
N X2, N X2,
L +-F L +-%
1=1 P
where means
X, X,
¥, =7k g =7k
X5 %Nl”‘kgz
(defined as in the 2,method) are substituted for missing data points in
variables Xj, Xk respectively.
The advantage of this last method is, that in the final computation
of the correlation coefficient only one sample size N is used., This can

be of particular importance, if the correlation coefficient is later on

used for statistical considerations, which are based on sample size N.

Remarks:

A. - One general remark can be made concerning the three discussed
methods: If the total number of observations is large, some missing data
points will not affect the correlation coefficient, computed by the three
methods, very much. This is based on the fact, that the mean, with large
sample size N, gets nearly stable.

B. It is important to know, what to do when data points are missing.

An example can be given reflecting this importance. A correlation matrix
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was computed by using Equation 7. It happened that for the computation
of one LR there were only a very fer simultaneous observations on vari-
ables a and b, while for all other computations the number of simulta-
nious observations was much larger and almost equal., This fact was not
observed when the correlation matrix was established. At another step of
computation later on, however, it was exhibited how influential the dif-
ferent numbers of observations were: =The correlation matrix R was not
Gramian (symmetric and all principal minors greater than or equal to zero)
any more, what it should have been according to the way it was derived as
R = ZZT/N. In using Equation 7--as well as Eqﬁation 8--the N is differ-
ent, however, for each element of R, Only by using Equation 9 one com-
putes . all elements on the basis of the same sample size N. This is an
advantage with respect to preserving Gramian properties. On the other

" hand, substitution of means for missing-data points may disturb the true
relations of the variables too much, so that a later factor analysis of
the correlation matrix may not reflect thé true intercorrelations émong
the variables any more, This suggests that the product--moment correlation

coefficient should be'computed by either Equation 7 or Equation 8.

Examgie: As an example for.the three considered methods, 130 pairs of
adult male height and weight measurements were selected. Using Pearson's
product-~moment correlation formula the correlation coefficient of the two
variables, on the basis of 130 pairs of measurements, is computed to

be 0.484, '

To exhibit the three formulae for different degrees of missing data,
three random samples were drawn from the sample of 130 measurements.

' a. A random subset was drawn, such that 75% of all available data
“were used, 50% in complefe pairs (height, weight), so that 50% of complete
data pairs were missing.

b. Next, a random subset was drawn, such that 85% of all available
data were used, 70% in compiete pairs, so that 30% of complet.. data pairs
were missing,. _ .

¢, - In the same manner, a random sample was drawn, such that 95%
of all available data were used, 90% in complet¢ pairs, so that 10% of

complete data pairs were missing.
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The results of the computation are listed below.

Missing data pairs

Computation by 50% 30% 10%
Equation 7 0.544 0,508 - 0.492
Equation 8 0.557 0,537 0.500

Equation 9 0.383 0,437 0.473

It is seen that the values computed by Equations 7 and 8 converge from
above and the values computed by Equation 9 from below to the "true"
value 0,484,

2.7 MULTIVARIATE CORRELATION~-PARTIAL AND MULTIPLE CORRELATION
COEFFICIENTS
Since in later sections we shall use the multiple correlation caef-
ficient we will briefly consider it and also the partial correlation
coefficient, for the sake of completeness, in this subsection.
To help clarify the nature of both coefficients let us consider
the following problem. Assume that the variables (scores on them are .
given) stature, intelligence, and qaickness of decision contribute to
leadership. We term the factor leadership the dependent variable and
the other three factors independent variables. Then, if we determine the

correlation of the dependent variable with one of the independent vari-
ables, while the influence of the other independent variables is held
constant, we determine what is named the coefficient of partial correla- ' '

tion between the two variables under consideration.

lathematically we can express the above problem in the form of a

regression equation., Let Xps Xyp Xy in deviate form, represent the

independent variables and let x, represent the dependent variable, which

is estimated from the independent variables. The equation

X

+b b

0 = Por.23%1 * Pozi13%s * Po3lia*s
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is called a regression equation of X, o X, X

2 X3 the b's being

constants, The graph X, versus X, for example, is a straight line

with slope bo3 12° In this coefficient the indices left of the dot
show the two related variables, while the indices right of the dot show
- the variables held constant. With respect to the fact that Ao varies

due partially to the variation in x, and due partially to the variation

1

in x, and xé, the b-coefficients are called partial regression coef-

_ 2
ficients,

Generalizing the above, a regression equation of Ry O X)3 RyseeesXy
can be written as
+b

X, =Db

0 = Dor.2s..®1 Y Poziaan, %2 F 0t Popliz, (k- )%k

The partial regression coefficients can,'if necessary, be computed
by the Doolittle Method. Then the partial correlation cdefficients are
easily developed from the notion of parfial regression coefficients.

’ When, in 2.2, we developed Pearson's product--moment correlation coeffi-

" .cient, ve learned that the correlation coefficient r is given by the
slope corrected for the dlfferent measures of varlablllty of x) and

x ]k = ao /0. . Hence, a partial regression coefficient is the slope
of the line relatlng the paired measures of a dependent variable and one
independent variable, when the influence of the other independent variables
has been excluded from consideration but when the units of measurement are
not necessarily of equal variability.  Corresponding to the development

of Pearson's product~-moment correlation coefficient let us now develop:

the partial correlation coefficient. Let b denote the

0i.123.,.)i(.0k
partial regression coefficient between the dependent variable Xy and
the independent variable Xi» while the independent variables

Xis Xyaeees XKoo excluding X;, are held constant. Let

°o,123...k and oi.lz...)i(...k stand for the standard deviation of
variables X, and X5 when the effects of variables L xz;..., Xy

and xl, EY ,...)x (...,x have been ruled out. et r

01 12...0iC. 00k

2
denote the.partial correlation coefficient. Then




¥
&
&
5
[
i

o ,
= ‘ I TRYYY €79 .4
P01.12.00)i00 0ok T P08.12.00)iC0 ok

%0012,k
and
r ) -y %0.12...k
10.12.40)iC00 0k 1041244408000k %12, Mk
Since »r we define the partial

0i.12...)i(. ..k © Ti0.12...)1(.. .k
correlation coefficient as:

Poi12,.0)iC0 0k

‘°"2"')i("‘k_°1.12...)i(..ﬂk

= /b, . b
Wu 0i.12...)i(.0 0k %0.12...k

Doi 2., .9i(. .k 10,12, .. )i(0 0k

The sagn is the sign computed for b or b

01,120,080 00k £0.12,..)3C. . k®

both being the same,

Referring again to our example-in the beginning of this subsection,
ancther question, we might be interested in, could be: What is the
correlation between leadership and the three independent variables taken
jointly? The coefficient which describes the relationship between the
dependent variable and the independent variables, taken together, is
called the multiple correlation coefficient.

For a certain individual we actually get a score on the dependent
variable, call it 2y; (1=15000,0) in standard form. On the other hand
by the regression equation we estimate sucn a score. 3So the multiple

correlation coefficient, denoted by R K? is defined as the correla-

0.12..,
tion between the observed Z0 and the computed Eb,
N ) N ZOiZ01
0.12,,.k ~ .t Ho_ o=
i=1 Zo 30

with Z0 = 801.23.‘.Kzl + see ¢ Bak.lz.;.k-xzk° Some computation done on

the apove equations yields

R

012,k T/ Bor,23, kTor YT T Bog 23 (k-1)%0k? To1,...,Tok

*lne Pearson's product--moment correlation coefficients.
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Section III

TdZ CORRELATION HMATRIX

3.1 INTRODUCTION

Since almost every factor analytic technique begins with a correlation
matrix, properties of correlation matrices and techniques concerned only with
correlation matrices are presented in this section. .

Those theorems and definitions from eigenvalue theory which are
particﬁlarly applicable to correlation matrices and which will be needed
in factor analyses are presented in subsection 3,2, Subsection 3.3 contains
a definition of a corrclation matrix along with those properties which are
important to factor analysis, Subsection 3.4 concludes the section with a

presentation of scaling techniques based on sample size.

3.2 EIGENVALUE~EIGENVECTOR THEORY
In this subsection we will consider those definitions and theorems

from the eigenvalue-problem theory which are neceésary for and used in

the development of factor analysis,

- Let us first state the eigenvalue problem,

" Consider the following_algebfaic problem: Given a matrix A . of order

n. Determine a scalar ) and an n-dimensional nonzero vector x, such that

Ax = Ax

(A, x can be over a complex field, A a complex number),

Definition 3.1: The above problem is defined as the eigenvalue

problem. The eigenvalue probtlem can be rewritten as
(A - AIn)x = 0.

This system of n homogencous linear equations in n unknowns has
nontrivial solutiens, if and only if the determinant of the matrix of

ceefficients vanishes, i.e.,
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all-A cae an .
d(A - AIn) = : : = 0. .
anl e ann-x

Expanding the determinant we obtain a polynomial in A of degree n,
denoted by ¢(X), so that the requirement is ¢(}) = 0.

Definition 3.,2: The equation ¢(X) = 0 is called the characteristic
cquation, The n roots of ¢(A) are named the eigenvalues of the matrix
A. Assoclated with each such eigenvalue Ai is a vector Xi» named an

eigenvector of A,

Completing the statement of the problem we have the following theoiem:

Theorem 8.1: The equation Ax = Ax has nontrivial solutions x iff A

is an eigenvalue of A.

Example
Let A Dbe: -
: 11 2
A =
2 1
The eigenvalue problem is
S R /> 0\\ X
- = 0.
2 0 A X
1 } ) o
The characteristic equation is
1-A 2
(X)) = det = (1-202_4=0,
2 1-X
with solutions A} =3 and A, = -1, the ecigenvalues of the problem. i

With each of the two cigenvalues is associated an eigenvector, For

Al = 3 and Az = -1 the system (A - lIn)x = 0 each time reduces to a single e

¢quation:




1
1-3 2 {xl -2 2 X, \
|
] = , ) \
2 1-3 \xz 2 - X,
gives x, =X, = 0
Az = ~1
1+1 2 x1 2 2 X
2 1+l %, 2 2 3
,glves..xl»+ x2 = Q.

The complete solution set is then described by

xl' 1
=k for " x - x =0,
x . i 1 2
2
X3 ) 1
1
= k for x +x =0,
2 1 2
X -1
V2 )

Let us further restrict ourselves to real symmetric matrics A, since
the matric swe deal with in factor analysis (the correlation matrices) are of
this kind. o

Let us consider the characteristic equation  ¢(}), stating the

following:

Theorem 3.2: The coefficient of Ar(r Sn) in ¢(1) is (—l)P
times the sum of the principal minors of order n-r of A, In particular,

the coefficient of A" is (—l)n, the constant tarm is det A.
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In the special case, where r = n-1, the coefficient of Ap-1 is

La +a+ ta ) = (-1)“‘13 a..
nn ii

(-1
1 22 =

where

is called the trace of A,
It will be useful to know the following two theorems about the roots

of the characteristic equation:

—

Theorem 3.3: If A is a simple root of ¢(A) = 0, then the rank of
(A - 3XI) is n-1.

Theorem 3.u4: If X is an r-fold root of ¢(A)=0, then the rank of
(A - X1) is n-r. [Ah roct X is called r-fold, if (A-X) is contained in

$(2) r times. A root which is not an r-fold root is called a simple root.]

Let us next consider some results about the eigenvalues and eigenvectors.
Theorem 3.5: The eigenvalues of a real symmetric matrix are all real.

Theorem 3.6: Eigenvectors associated with the eigenvalues of a real

symmetric matrix have all real components.,

Theorem 3.7: Eigenvectors associated with distinct ecigenvalues of a

real symmetric matrix A are orthogonal.
Let us now put one more restriction on the matrix A, namely the

restriction that all its elements shall be greater than zero.

Theorem 3.8: Let all elements of the real symmetric matrix A be
positive. Then A has always an eigenvalue A, which is real and positive,
which Is a simple root of the characteristic equétion and which is not
exceeded in modulus by any other eigenvalue. The-eigenvectbv corresponding

to X has positive componerts and is essentially unique (up to scale factors).

68




(The theorem is due to Perron (for the proof see Reference 22). It can be
extended to so-called irreducible matrices, which case will be considered,

though, in the context.)

3,3 DEFINITIONS AND PROPERTIES

We begin this subsection with

Definition 3.3: A correlation matrix R is a squarc matriz where each

element r. . is the correlation between the variables Zj and A

In the sequel, it is assumed that Pearson's product-moment correlation
is used. o

The most important properties of a corpelatioﬁ‘matpix from tie’ point
of view of factor analysis are included in the statement that a correlation

matrix is Gramian. A Gramian matrix may be defined by

Definition 3.4: Let' R be symmetric. Then R is called Gramian,
if it satisfies any one of the following equivalent conditions:

1. . R  is positive semi-definite,

2, R has all non—negétive eigcnvalﬁes.

3. R can be represcated 5y the matrix product AAT.

4, 'R has non-negative priucipal minors,

5.  The inner product, (R{]X) 2 0, for all X.

Obviously the corr:lation matrix R is Gramian since it is obtained

by the product of score matrics,

Where H  is the number of obscervations,

£ 4.4 SCALINSG TECHNIQUES BASED ON SAMPLE SIZE

Two correlation marrices with identic:l clements ill, of course,
" yicld iduntical factor analyses. If it were the case that identical
cluments had different significanﬁc levels, these differcnces in
ruliahility‘wuuld not aplear in the factors,. Thus in owier fér a

factor analysis to rellect the significanec: of the corrslation voefficionts,
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the correlation coefficients should be scaled in accordance with their
significance,

As used in itection 2.5, the variable

I-%° Fisher's Z-transformation, (1)

N=3 ' V (2)

an unbiased estimate of the standard deviation where N is the size of
the randon sample used in computing the correlation coefficient, r.
Then, for 95% of the samples, the variable

72 =32 1,96 : (3)
A )

will be less than the true population variable, Thus, Equation 3 may be
used to obtain a scaled correlation coefficient p given the observed '
correlation coefficient r. p will have on the average one chance out of
twenty of excecding the true population correlation coefficient. The
probability may be adjusted by changiﬁg the numerator of the second term
in Equation 3, )

Equation 1 may be used to solve for p as a function of. r by

substitution into Lquation 3. We obtain (as derived in Section '2.5):

- [1-A(0)] + [1+A(M)Ir )
[1+A(N)] + [1-A(N)]r

Equation 4 is the formula to be used to scale observed correlation
coefficients, r.
Since each element of a correlation matrix R = (rij) is a correlation

coefficient, Equation % may be written as

[1-AQH)] + [1+A(N)]pij
ij = TIva@0] =AM Ir 5

4

for -»plication to correlation matrices with observed correlations, rij'
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Figure 1 shows curves relating r and p for various sample sizes,
A chart to be used in the same manner as the chart presented here appears

in Ezekial and Fox, Methods of Correlation and Regression Analysis

(Reference 23, p. 294), However the shape of the curves in the chart

differs from those presented here, and the derivation of the chart is

not given.
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Section IV

TECHNIQUES OF FACTOR ANALYSIS

4.1 INTRODUCTION

After the correlation matrix, which furnishes the basic material

for a factor analysis, has been investigated, one can proceed to

- consider techhiques'of.factor analysis. This is done by briefly

reviewing the model in 4.2 and by then discussing, in 4.3, the prop-
erties of the two most important and popular factor analysis methods,
the centroid and the principal—factors methods.- Starting with section
4.4 specific problems of factoring a correlation matrix are discussed;
4.4 presents a new technique to estimate communalities; 4.5 compares
most of the important completeness criteria; 4.6 called "Eigenvalues
and Their.Bounds" suggests a way to an answer on the importanf quesfion
of the right samplé size. The section ends with a brief discu§sion of
factor écores in 4,7, '
4,2 REVIEW OF THE MODEL ' _ _

In this subsection the model will be presented in greater detail

' stating basic definitions and equations,

We begin with the two basic theorems of factor analysis:

_Theorem 4.1: For every correlation matrix R there exists a

corresponding factor matrix F such that

Furthermore,

Theorem 4.2: There exists an infinité number of factor matrices
F which reproduce any given correlation matrix R.

The problem, then, is not only to find an F, but to find the F
that satisfies a given set of initial conditions»which_are, more often

than not, subjective decisions and boundary criteria. Thée solution of

the factor analysis problem consists of two basic steps:




~ 1. Factoring problem - factor a given R into a factor matrix
with an arditrary reference frame.
2., Rotational problem - rotate the arbitrary reference frame
into a "preferred" or "simplifying" position.
. Factorial methods were developed primarily for the purpose of -

investigating and identifying the principal dimension or categories of

mentality and thus are plagued by the non-mathematical justifications

which are used to evaluate them. A technique infallible to a psychologist
can be worthless to the engineer grading castings or a company rating its

employces. Consequently, some of the basic definitions and techniqués

- are given next using mathematical notation while comments on reliszbility

and practicality for application result from longhand factor interpretation.
From References 2 and 24 come necessary basic definitions and equations.

. 1t is the purpose of factor analysis to represent a variable xj in terms

of several underlying factors, or, as Harman (Reference 2) states,
"hypothetical constructs"., There are vafious'kinds of factors:
Common factors - involved in more than one variable
- a, General factor - present in all variables

b. Group factor -~ present in more than one but not in all variabies
Unique factofs ~ involved in a single variable.

We now use the notation Pl’ F2,..., ﬂ“ for, say, m cormon factors and

Yy, Uy,e.s, U, for, say, n unique factors to express linearly any variable

in terms of the factors as follows:

Xj = alel + aj2F2 + see ¢ ajmpm + ajUj.

For a particular individual or observation we have

in = aleli + aj2F2i LARARAE ajmrhi + ajU
The coefficients ajp (j =1,...y, 0 4 p=l,.0s, m) are the clements of the

factor matrix and are referred to as the factor loadings composing the

§i, 12 Lyeery No

factor matrix

F=lagd
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The total variance of X. can be divided into two parts, namely,
that part which it shares with other variables and that part which is

unique. For example.

2 1 292 L ... a2 2.2 v 2
o5 = N’(ajl IFj; + +as, L+ aj Xuji

+ Qajlaj2 Z FliF2i + eee 2aj1maj Z Fmiuji

where all summation limits are 1 =1, 2, +ee, N

If the variables are in standard form and the factors are uncorrelated,

1l =0 = a? + e0e + a? + a?

j it jmn -~ 7j

The terms on the right repreéent portions of the variance ascribable to the

factors (i.e., agl is the contribution of Fl to the unit variance of Zj)'

The total contribution of a factor Fp to the variances of all variables is

defined to be

'z‘ 2
V. = a.

Uniqueness can be further broken down into specific, Sj’ and error,

E., factors. Since error and specific factors are uncorrelated,

where b, and c. are the respective factor loadings of Sj and Ej. Therefore

the total variance can be expressed
l-= h? + a? =hl+ b? + c%.
J 3 J 3 3

Communalities, Then, are defined as the common-factor variances of the

variables.




m common factors and one unique factor is sometimes called a factor pattern,

variable is the variable complexity. A factor matrix which represents
the totaivunit variance of each variable is the complete factor matrix.

A faétqr~ﬁatrix which represents only the common factor variance of each
variablé is the reduced factor matrix. A correlation matrix with ones in

tho diagonal‘elements is referred to as the complete correlation matrix,

frame in (m + M) - space (factor space) will be called a variable vector.
The re-orientation of this vector within the space constitutes the rotation

problem. Techniques for factor rotation are discussed in Section V.

4,3 TYPES OF FACTOR SOLUTIONS
Ideally a factor solution displaying a minimum complexity (i.e., a
common factor space of one dimension or two dimensions) is the goal of

the factor analyst.

4 set of equations giving any set of varibles (ij in terms of the

a a . .
11 12
»
T a a . .
21 22
anl anz

The number of common factors included in such a description of a

alm

a

nm

. Such a pattern can be presented in tabular form, e.g.

a
1

. A row of the factor matrix in relation to an origin and reference

Such a factor pattern might look like
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1n 1
a a

21 2
a ) a -
ny : . n

‘The uni-factor and two-factor solutions are examples of such theoretical

entities., However, the factor analyst rarely will see data which can be
accounted- for 'so simply. Data which are not well behaved, requiring a
complex network of correlated and uncorrelated common factors as well

as a set of inconsistent unique factqfs,\is the rule rather than the
exception. Consequently, the factor analyst generally must first decide
what he is looking for and then choose a technique which best suits his

needs., A rather short list of factoring methods is at his disposal.

-As a matter of fact there are but two popular methods practiced,idifferen—

tiated significantly by the number of calculations involved. Thus the

centroid method for years has set the standard in hand computation tech-

niques while the principal axes method has §roved itself workable using

high speed digital computers, Both methods can lead to multiple-factor
solutions. A short discussion on each of these methods follows.
Centroid Method - The centroid method of factoring exiibits what
Thurstone calls a "computational compromise" since the resulting factor
loadings are not unique for a given R, Let us assume, then, that the
original score matrix S consists of n vectors contained in m~space where
m is the number of common factors. As is well known, the correlations
between any two of the n variables are juét’the scalar products between
them, To obtain a vector whose m componénts‘give the centroid of the
points describing the set of common facfors; we simply average the cle-

ments in the factor matrix approximately, or
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[Fla 5 Do 31 5]

where k =1, 2, ... n. We require the frame of reference to have an

axis passing through the centroid thus reducing the centroid vector to

.(Bl_):ak’o,o,...,o]

With a minimum of transposition utilizing the new axis, a general
formnla can easily be derived which gives the elements of the first factor

loadings: .

a, = s 3131,2,ie4,m

ol
o

n

S, =] r, and T =

1y 3K j51 k=1

s ©~123
o]

jk
The residual matrix is then calculated
= -~ a, ’
frod = Pac= 235,30
and the next factor loadings are calculated using

c.S.l ’
a, = L s5=-192....n,

J2 T
1

where e, =, depending on necessary matrix reflections.

Removal of the remaining factors follows the same pattern until the
process is ended., Interestingly enough, no dependable technique exists to
step this sequence., However, this problem will be considered in subscetion
4,8

Principal Axes Method - The principal axes method of factoring derives

an ellipsoid representation where the axes of the eliipsoids corrcspond
to the factors. The selection of the factors occurs such that their respec-
tive contritutions to the communality decreases. In other words, the

contribution of factor one to the total communality is maximum.
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Therefore, 'V ='a§1 + agl + e0e t arzllis chosen as maximum under the

conditions
v, = ? a. . ’
jk = ]pakp s Jak.= 1,2,...4 1.
p .
Applying differential calculus to these conditions, the.characteristic
equation of the correlation matrix R is derived

2= 2] =,

Solutions of the characteristiec.equation are, of course, the eigen-
values of the matrix which have the following well known property,

.generally expressed:

: 2
A= E a. -
P §31 JP
The set of eigenvectors {a4p} corresponding to Ap then are used to obtain
3 » e ,

the factor loadings of factor Fp:

s 351,000, N0

' .éjp :
/“2
1

*ip/ip
+ a2+ eee ¥ @2
P pr] np

Of course, communalities must be es;imafed in this preccess and can affect
the solution for a small number of variables. Since & decreasing amount
of communality is extracted with each factor, an ¢ can be chosen such
that  |R2 - h2|Z¢ completes the faétqring where EQ is the derived

approximated communality.
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4.4 COMMUNALITY

In most standard factor analysis packages available in computation
centers all over the country, there exist at least three alternatives
in the estimation of communalities: insertion of ones in the diagonal
of R; arbitary choice of hg as the largest Tyy in either the
ith row or the jth column (this is the technique employed by Thurstone
(Reference 25) in deriving human factors); or by using squared multiple
correlations (see Section 2.7) as communalities. Harman (Reference 2, p.86)
states the problem as follows:

"Literally dozens of methods for estimating communalities
have been proposed but none of them has been shown to be
superior to any of the others on the basis of closer approxi-
mation to the "true" values. As a matter of fact none of
the methods has been demonstrated to lead to minimal rank
of the .correlation matrix. The cholice among the various
methods of approximation is generally made on the basis of
available computational facilities and the disposition of
the investigator to employ that method which intultively
seems best to approach the concept of communality."

In this subsection a new technique to obtain communalities is pre-
sented. Let us first introduce in more detail the basic requirements
for estimation of communalities.

For uncorrelated factors the communality, h%, of the jth variable

is given by the sum of the squares of the common factor coefficients, viz,,

h2' = ag +a2 -0-"’1"52.
3 i1 j2 jm

The elaboration of this statement has yielded further defining
characteristics:

1. The communality may be defined as the squared multiple corre-
lation of the given observed variable on the common factors.

2. The squared multiple correlation of the given variable on the
remaining variables must be the lower bound to the communality
(References 26 and 27).

3. The communality is the upper limit of this squared multiple
correlation as the number of variables approaches infinity (Reference 27).

4, Since the communality is a variance, its upper limit is one.
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5. Unique communalities can be obtained only when the rank of the

matrix satisfies the following condition (References 28 and 25).

2n + 1 - V¥8n + 1
) . .

‘m £
These requirements yield properties which have been stated as follows
(Reference 29): '
1. The obtained communalities must be within the following boundaries:

0< R2zh?2 41,
3 i

2. The factor loading‘matrix should reproduce the reduced corre}ation
matrix exactly. . v

3. Minimum rank should be attained.

4. The reduced correlation matrix should be Gramian.
Fhen the principal factor method is used, properties 2 and 4 can be shown
to be equivalent.

Guttman (Reference 30) has shown that diagonal values which reduce
rank may not satisfy other requirements for communalities, The Heywood
case (Reference 31) is the classic example. Moreover, the statement often
made that the rank of any symmetric matfix with even random elements can
always be reduced to a certain degree by choosing diagonal valués has been
shown to be false (Reference 298). The proof is based on the impossibility
of assuring real solutions to systems of nonlinear equations with real
coefficients. From intuitive considerations of experihent design, it is
to be expected that the number of factors causing variance among the
variables is even greater than the number of variablés.‘ Other minor factors
cause variance in the measure of variables intended to measure major factors.

Thus the attempt to find diagonal values which reduce rank must end in
only some sort of approximation{' But rank reduction is basic to a par-

simonious explanation of the variance of the variables, and different
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approaches may be taken to the problem of approximating rank reduction.
For example, one of the few communality estimates based on rationale, the
method of triads, uses average diagonal values which seek to force deter-
minants of submatrices approximately to zero. On the other hand, the
refactoring method simply postulates the number of factors. Many so-
called "estimates" of communality do not even consider rank reduction.

Then from the foregoing statements we may distill a refined definition
of the communality problem: :

Find diagonal values hj such that 0 ¢ Bg < h% < 1,

and such that the correlation matrix with these diagonal

values is Gramian. Moreover with these diagonal values, a

higher percentage of common factor variance is explained

with fewer factors than with any other diagonal values.
A method for computing diagpnal values which attempts to satisfy this
definition is described in the sequel. 4

A, The Method

If a symmetric matrix A is bordered by the column U, the row U,

and the scalar a, then the eigenvalues A of

T A u)
A = ) .
[ o
satisfy the equation,
n (U]x.)?
WP i L (2)
T

where Xi is the unit eigenvector corresponding to the eigenvalue xi
of the nx n matrix A (Reference 32, P. 27).

Since the rank of a matrix is the order of the matrix is the order
of the matrix minus the number of zero eigenvalues, to reduce the pank
we must have zero eigenvalues. Then, in view of Fquation 2, a2 necessary

condition for zero eigenvalues is that

n (U|x;)?
@ = f e . (3)
i1 i
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et \

When Ay = 0, it can be shown that (u !Xi) = 0, thus

.
1im SU—L——I—)—— = 0 .
A0 A,

1 1

Thus the terms in Equation-a corresponding to zerc eigenvalues of A
may be elided, ) )

The foregoing séheme wiil be used to find each diagonal element.,
Before presenting the algorithm formally, a théorem on transforming
eigenvalues is needed. Two diagonal elements of R, Rkk amd Rnn’
may be interchanged by the transformation

IkRIk

where Ik is the identity matrix with the k'th and n‘Ch rows (or columns)

interchanged. The use to be made of this transformation rests on the
Theorem 4.3: R and I RI have the same eigenvalues.
Proof: R may be diagonalized by an orthogonal transformation P by

R = P*AP

where A is the diagonal matrix. of eigenvalues of R,

Now we may consider Rk’ = IkRIk‘ Using the facts that Ika = I and
s - . .
Ik Ik »wa héve
= = E]
Ry IkRIk IkP APIk
- Y%
= (PIk)‘A(PIk)

= PYAP,

Thus Rk is diagonalized by the orthogonal matrix Pj with the same
diagonal eigenvalue matrix 'A. Moreover, the éigenveéfors are also per-

muted since’

RX = X ,

LA(LL )X = ALX ,
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(IkRIk)(IkX) = A(Ikx) ’
and Rk(Ikx) = A(Ikx) .

Then we may consider approaching the communality problem by
choosing Rkk as follows:

2
R, - } G lX%2 % = 1,2, siin
kg N
where . R;(Xi = xixi .
» U
R, = B T S R ,
ok KTy
kB
and (Xi |Xi) = 1

Both unities and squared multiple correlations have been used as
initial diagonal values. After the diagonal values have been found for
all k, the process is repeated until all diagonal valueé are stable,
Diagonal values are used (i.e., replace old values) as soon as they are
calculated. In practice, convergence is enhanced by omitting terms in
Equation 3 for which A; <& = .05. The final result of the method is
a clustering of eigenvalues about zero. Thus therc are small negative
eigenvalues, For the sake of interpretation Gramian properties are not
necessary. However when data reduction is the cbject of the factor
analysis, Gramian properties may be restored by adding the absolute
value of the negative eigenvalue with the largest absolute valde to each
element on the diagonal. In proof we write

R = PRAP

where A is the diagonal matrix of eigenvalues of R,
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Let An be the scalar matrix AnI;
* - z 13 -
; then R An P%:AP An .

But since PP = I and commutes with Aﬁ,

n

PP - P*AnP
% -
P¥(A An)P .

R - A

u

Thus the elements of the'diagbnal mafrix‘ A - An are the eigenvalues of
‘R - An. But the elements of A - An are all pcsitive or zero. Therefore
R - An is Gramian. However, this method for forcing Gramian properties
may lead to communalities’ larger than 1.

To better understand how the above bordering scheme may drive the
eigenvalues of R to zero and thus reduce the rank, let us plot on the
. ‘ same graph each side of Equation 2 as a function of A (see Figure 2).

. ' The solid graph is the right hand side, and the dotted graph is the

left hand side of Equation 2. The eigenvalues A of the bordered matrix
occur at the intersections of the sets of curves. Notice that the
eigenvalue of the smaller matrix always lies between two éigenvalues
of the larger matrix. Each-of the dotfed lines corresponds to a
different choice of «. The uppermost dotted line corresponds to the
a chosen according to Equation 3, in which case we have an eigenvalue
of zero. The observed effect of reépplying the algorithm after trans-
formation of the matrix. (i.e., finding a new diagonal element) is to
shift positive eigenvalues to the left (closer to zero) and negative
eigenvalues to the right (cioser to zero). A formal deductive proof
of convergence has not yet been found; however the success of the
algorithm in solving the communality problem is exhibited in the following

examples,

o | .
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B, Examples
Example 1. Six Hypotheticdl Variables: Harman (Reference 2, p. 91)

used these variables to illustrate communality estimates by various
methods. The results of applying the method described in this paper
are shown by plotting the eigenvalues of the 6 x 6 correlation matrix
with calculated diagoﬁal values (Figure 3), The eigenvalues obtained
using unities and squared multiple correlation are also plotted in
Figure 3, In this example and in every other application of the
.method described here, the following inequalities have held:

2 2 . :
Ai‘R ) <Ai(d ) <.Ai(l) i 0005 m

R§< d§< i | i = 1,...},n

where di are the calculated diagonal elements and »Ri are squared
multiple correlations. The calculated diagonal elements are "true"
communalities in thé sense that the correlation matrix was constructed
to attain rank two with these values. No communality estimate presented

by Harman found these values,

Example 2, Thirteen Psychological Variables: The data for this example

was also taken from Harman (Reference 2, p. 137). However these variables
are experimental rather than hypothetical, The plot of the three sets of
eigenvalues are shown in Figure 4. These variables were well chosen to
illustrate three major factors as clearly seen in Figure . However, it
would only be accidentally possible to find diagonal values which would

yield ten zero eigenvalues (i.e., a rank three correlation matrix).

Example 3. 16 Hypothetical Variables: A 16 x 16 matrix was constructed

by squaring a 16 x 4 matrix of random elements with normalized columns,
Thus the 16 x 16 matrix was of rank 4 when the constructed diagonal
elements were retained. The proposed method found these "true communali-
ties" given the constructed matrix with unities on the diagonal. The

plots of eigenvalues are shown in Figure S.
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C. Conclusions

The proposed method found diagonal elements which satisfied the
refined definition of communality in all cases where an exact reduced
rank was known and possible, In the other cases, the method found diagonal
elements which satisfied the definition better (from the eigenvalue point
of view) than did either squared multiple correlations or unities.

The method converged to "true communality"” when either zquared multi-
ple ‘correlations or unities were placed on the diagonal initially. However,
the process converged faster with squared multiple correlations as initial
values. . .

"From a study of eigenvalue plots in several cases, it would appear
that squared multiple correlation is a very good. estimate of communality
when there are only a few well-defined major factors. That is, either
estimates of communalities are calculated by the method presented here
using unities or squared multiple correlations as initial values for the
method, or squared multiple cobrelations are themselves used as estimates
of communalities. When factor analysis is used for the purpose of inter-
pretation, the factor loadings are used to indicate which variables to
associate with which factors; And the sets of associations arc the same
whether the factor loadings are obtained from a final reduced correlation
matrix with communalities on the diagonal or squared multiﬁle correlations
on the diagonal. ‘Thus squared multiple correlations arc sufficiently close

to true communalities to distinguish major factors when they exist.

L.,5 COMPLETENESS OF FACTORIZATION
In factoring a correlation matrix no unique test. as an answer to the
queétion "when to stop factoring?" has yet been developed. At present
there exist several methods which are applied with more or less success.
A few comparative or survey studies of some of th:se methods are
available: 'Mosier (Reference 33) studies six different tests for
completeness of factorization, applying them to one corrclation matrix.

Cattell (Reference 24) lists and evaluates eleven tests. Burt

" (Reference 34) summarizes, under the topic of "tests of significance

in factor analysis" many of the existing methods. Fruchter
(Reference 35) comparatively evaluates various tests, applying them
to one or more concrete cases. In the most recent survey paper Sokal

(Keference 36) cvaluates comparatively five tests applying them to
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Thurstone's box measurements, an artificial correlation matrix, a
psychological matrix and a biological matrix, using centroid factor
extraction. The present investigation compiles methods, which are used
by factor analysts, in the form of a quick reference, listed in a
systematic way.

Before leaving this introductory part let us make two remarks:

(a) Cattell (Reference 2u) and also Burt (Reference 34%) and
Fruchter (Reference 35) suggest, that if one wants to rotate, it
pays off to extract one or two more factors than necessary after
application of any of the completeness tests, since one obtains more
accurate results. Several workers also suggest applying more than one
criterion and deciding upon the number of factors on the basis of the
results of all the criteria,

(b) Obviously a solution to the communality problem together with
the simultaneous knowledge of the rank will also resolve the completeneés
problem. The technique described in 4.4 presents such a solution. Since
it is a converging process the adequacy of the factor sclution of the
original correlation matrix may then be shown by any of the following
tests, It is suggested to then use one of the statistical tests, in order
not to bring an empirically approximate view into the mathematically sound
picture of the applied method. . )

For reference let us set up the following list of methods to test
completeness of factorization:

A. 'Empirical completcness tests

1. Percentage tests
2. Tucker's test
3. Cattell's screc-test
4, Kaiser's test
B. Significance tests for completeness
1, Tests for joint significance of residuals
a, McNemar's test
b. Saunder's test
2. Tests for individual significance of rcsiduals
a. Test by means of standard error formula for
the final residuals
b.  Sokal's test

92




3, Burt's chi-squared test
4. Lawley's chi-squared test
C. Miscellaneous tests for completeness
1, Index of completeness of factorization

2. Listing of other completeness tests

A. Empirical Completeress Tests

1. Percentage Tests )
A practical and commonly used test for completeness of factorization

considers percentages of total communality, accounted for by the factors.
The tests can be conducted under different aspects: ‘

(1) Determine in advance to analyze up to, say, 50% of the total
variance, or a suitable proportion of the total reliability (leaving a
proportion for the specificity).

(2) Determine in advance that a factor which accounts for less
than, say,' % of the total variance will not have any practical signifi-
cance in the sense of being identifiable. '

(3) Extract factors and if, after, say, 90% of the total communality

or total variance have been accounted for, a factor accounts for only

2% of these totals, do not retain it in the set of factors.

The percentage tests are especially handy for the principal factor
solution since the contribution of the factors to the total variance or

total communality decreases with each succeedingly extrécted'factor.,

" One could then stop factoring after one reaches a factor which accounts

for, say, 5% of these totals. One knows that the next factor which could
be extracted, would contribute less than 5% to the totals.
There is one more simplifying aspect of the principal factor solution,

The total contribution

of factor Fp to the total variance or total communality, which is equal
to the trace of the determinant of the correlation matrix, is equal to

the xp-eigenvalue.' The effect of each factor contribution to these totals




can therefore be computed easily as eigenvalue-percentage of the trace,
2, Tucker's Test

Denote by [ ka] the sum of absolute residuals of the n X n
correlation matrix after k factors have been extracted.

Tucker's test (Reference 37):

R if
VE Ipk+ 1 s D -1
n
‘\/i fo, |

. then the (k+l)-factor is considered to be insignificant.

Tucker's criterion after a modification by Blakey (Reference 38):

If

Dol o

Iyl

n-1
+ 1

then the (k+l)-factor is considered to be insignificant.
Remarks:

(2 I loy| and [} lo, | include the communality residuals.
Sokal (Reference 36) states, that it is desirable to use re-estimated
communalities in place of residual ones in the denominator; but since
the difference between residual and re-estimated diagonal values is
usually slight, it is not of greaf importance what values are used in
the main diagonal.

(b) Cattell (Reference 24) considers Tucker's test as one of
the most reiiable and practical ones of the really quick tests of

completeness, though it sometimes can give strange results, since

1
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the value of the ratio can decrease or increase after extraction 'f
of factors instead of increasing steadily. :
. Sokal, using the second form of the criterion in a comparative
study of five tests for completeness of factorization, considers the
test as not very suitable as a strong and fast criterion. ﬁmpiriéal
investigations by McNemar (Reference 39) and thoorctical investig-
ations by Burt (Reference 34) suppoﬁt his standpoint. Burt criticized
Tucker's test as making no allowance for the number of variables and
the number of factors éxtracted'and as making no explicit reference
to the size of the sample. He cqnsiders the test as marking too
. many factors as insignificant.
Tucker's criterion has actually been employed by more factorists
than any other criterion. o
3. Cattell's Scree-test (for a principal factor solution)

- Starting with the largest, each eigenvalue is plotted in an x-y-
coordinate system, its number versus its length. Then the curve
through these points is examined. If the number of factors, m,
is less than the number of variables, n, n-m eigenvalues of the
correlation matrix will be zero or at least close to zero, lying
on a straight line almost parallel to the x-axis. The test consists
in determining that point, where the curve breaks off the straight
line. The number of eigenvalues determining the left part of the
curve yields the number m of factors.

4. Kaiser's Test (Reference 40)

Upon extensive studies of correlation matrices with unities in
the main diagonal Kaiser suggests as a practical basis for determining
the number of common factors the number equal to the number of
eigenvalues greater than one. Kaiser found that this number amounts
to about a sixth or a third of the total number of variables.

B, Significance Tests for Completeness

l. Tests for Joint Sipnificance of Residuals

A, Mcliemar's test
Let % denote the observed standard deviation of the

residuals (disregarding diagonal values) after extraction of k
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factors. Let M denote the mean of the communalities (computed

from k factors)., Then 1 - M is the average uniqueness. If

h?

N being the number of observations all significant factors have

been extracted. ' N

Remarks: .
(a) McNemar's criterion is an attempt to test the significance -
of the residuals after k factors have been extracted from the correla- ;
tion matrix. He used the centroid solution for his derivations. 1In the

beginning years of factor analysis an attempt to do so was made by com- : j
paring the standard deviation of the residual correlations with the
standard error of the original correlations. This device, though, is .
not adequate since residual correlations are analogous to partial
correlations (the factors being held constant) and should for this

purpose be divided by the geomeiric mean of the uniquenesses of the

two variables under consideration. To reach his goal to test the ,
significance of the residuals after k factors have been removed
from the correlation matrix, McNemar approximates the standard devia- i

tion of the residuals or partial correlations by

%%

l-Mh2

Cattell (Reference 2u) reasons on the basis of experience that
McNemar's test tends to stop factorization too early. Sokal (Reference 36)
concludes from his studies that McNemar's test yields interpretable
results except for problems with very large sample size N and low
uniquenesses (that is, high communalities), in these cases indicating
more than the true number of factors. In this respect it is worth -
noting that the test mainly takes into account the sample size N

(b) Burt (Reference 34) suggests along the same line a procedure,

which, as he says, is more satisfactory by not using residuals but

9%
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converted residuals (see Sokal's test) squaring them and summing them
up, Then, if N is large, this sum will be approxxmately distributed
as chi~squared. So, he suggests to determine significance of any
partlcular sat of re31duals by referring to the X 2_table with

-n(n 1) ~kn+ -k(k degrees of freedom.

b. Saunder's test :
Let lp, denote the sum of the residuals of the n x n correlation

matrix after k Factors have been extracted., Let N be the sample
size and denote by ' '
%

; a

sf1 12 O

the sum of all n X k factor loadings, the loadings taken from the

unrotated matrix., The test can take on two forms: If
2

n‘-kz (n- 21 Lgl ]l)

zpé 5‘ n N

after the kth factor has been computed, then the factor extraction is
complete., If the reliability coefficients of the variables are denoted

] o2 <{n—k) ( 1 3")2

after the kth factor has been computed, then the factor extraction

by er then the test can be stated as: If

= uM::!

is complete.

Remarks:
(a) It is advisable not to include the diagonal residuals in
X p2 unless one is sure of exceptionally good communality estimates,
1f the communality residuals are excluded from the summation one has

to multiply [ pi by ~3§. to bring it to that equivalent with a

n-

whole matrix.

97.




(b) Saunder's (Reference 41) claims his formula is an iﬁprOVe-
ment over McNemar's test since it takes into account the sample size,
the number of variables, the reliabilities and especially the number
of factors. ‘ -

(c) Sokal (Reference 36) applying Saunder's test t6 his four
matrices obtains results similar to those obtained by McNemar's ' . é
criterion. He again finds the apparent influences of large sample sizes |
or high communalities on the results, : : .
2. Tests for Individual Significance of Residuals,

a, Test by means of cStandard error formula for the final residuals

Two approximate standard error formulas can be employed to decide
upon the significance or insignificance of any residual after any ’
number of factors has been extracted from the original correlation ‘ :

matrix. ] . !
(1) Theoretically it should be: R = AA'. Extracting common ’ i ) :
factors, R will only be reproduced by AA' approximately. How
good this approximation is, or in other words, how complete factorization
is, can be judged on the basis of the residual matrix R, R = R + AA', v .;
Each element of R, the final residual correlations, should be approxi- ’ ‘
mately zero in size; since, when all common factors have been extracted,
no further correlation should exist between the variables. Let us assume,
therefore, that the distribution of the residuals is similar to that of

a zero-correlation in a sample of equal size, Then denote by °; the
standard deviation of the series of residuals and by 9=0 the standard
error of a zero-correlation. Under the above assumptions it would then

be necessary as a test for completeﬁess to determine if




From the applicatioﬁ of this test-depending on the sample size alone,
which is rather crude-one may conclude: If

to an appreciable extent: further linkages between variables may
exist; further factorization may be necessary. If .

-1

N

to an appreciable extent: unjustified linkages between variables were

0~ <

" factorized.

The above test can be found in Holzinger and Harman (Reference 42)
and in Harman (Reference 2). Applications can also be found in these
texts. Similar formula® have been proposed by Kelley (Referenqe 43)
and Thurstorie (Reference 44),

(2) Holzinger and Harman (Reference u42) have derived a standard

error formula for a residual after any number of factors has been

extracted from the correlation matrix.
Denote by ;;j the observed correlation between variable i
and j , by Fk. the vesidual after extraction of m+l factors,

by og and o< ‘the standard errors of factor loadings, then

is . ajs
o2 2 ¢ L2 o2 '
o = ¢ + 7 B2 o + a?  agal
rij rij 820 is ajs js is

This formula, however, cannot be applied to a residual obtained from

- any solution since the standard errors 62  and 02 are only known

for the two-factor and bi-factor solutiongés is

In approximating the above fbrmula,'so that it does not explicitly
contain the standard errors of the loadings, the assumption is made
that all observed correlations can be well enough described by their

average, computed by

p = ,l f (rij 3 L, = L., my i 2O9)
2(n) i,3
2
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And if Pg denotes the average residual correlation used for computing
loadings of the factor Ps, the approximate formula after extraction
of m+l factors is of the form:

2 2 ; 2
2 . (1-0)(5+8 +2%) 1753 _ 3
O 2N + L, |2 Ps st 20

P\?éu'!

L

=1

These standard errors are tabulated ;n References 42 and 2. Applications
can also be found there.

It should be noted, that the necessary approximations to arrive at
above formula, make the ¢ 5 -value usually smaller, so, in order to take
this fact into account, a residual which is twice its standard error can
still be considered insignificantly different from zero,

b. Sokal's Test '
In the following test each single residual is tested for insigni-

ficance. Denote by o, the residual correlation between variables

ij.x
i and j after k factors have been extracted. Let u%k denote

the uniqueness of variable i after extraction of k factors:

2 = . a2 .. a2 - ese . a2
ik 7% T % Ak
Convert the residuals to quantities analogous to partial correlations
(factors through k kept constant) by dividing them through the geometric

mean of the uniquenesses of the variables under consideration. Name the

converted residuals rij.12...k . So
P, P,
Yij.2..k = 12'* — - JeaB.
W’uik ujk ik ik
Assume that the .. have the same sampiing distribution as

ij.12...k
ordinary partial correlation coefficients. Under this assumption test
each converted residual against the minimum significant partial correlation,

denoted by T

st obtained from table IV, Fisher and Yates (Reference 45):




If

Tija2...k < To.s

at a presumed level of significance with N - (k+l) degrees of freedom,

then rij.lz...k is 1n51gn1f1can§.'

Remarks
(a) The rather laborious work to conduct the test on each residual

‘can be simplified by exciudiﬁg certain residuals from the test. This

is done by the following procedure: for a'presumed significanca level,

ré s can be determined as well as the lowest two uniquenesses,
¢ 2 2 - :
denoted by  uf, and m5k, Then from

2
2 = Pij.x
= e
m.s ik m ik
'pij.k can be determined:
2 ] 2 2 L L2
pij.k rh.s m ik mujk pm.s

and all values

have to be considered.

(b) Sokal (Reference 36) discusses this completeness test in his
comparative study, mentioning also some computing simplifications. He

obtains his results by judging the elements of the residual matrix by the
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a:q;e‘deécribed significance test and by the "importance" test, that .

is:’;by counting the number of partial correlations larger than an

arbiffary 0.05 (disregarding the sign), that remain in the matrix

after: k = factors have been extracted, naming those correlations .
’fimpdffant. On the basis of his sfudy he recommends these procedures

'fbi;eéf for completeness because of the statistical basis of the

significance test and the apparent consistent results.
' ‘:iic) In one of his early tests Burt (Reference 46) started from

the same considerations as Sokal, defining rij 12.. .k and testing o
it agdinst the standard error of a zero partial correlation, -——

o /N
then the test is given by . -

v . Pijx 1
ij.12...k ugy ujk N

3. ‘Durt's Chi-squared Test with Z-transformation
Theoretically, it is R = AA'. Test the significance of the
differences between the elements of R and of AA' after k factors

havé been extracted., Let Z denote the elements of R transformed

by ;iéhér's Z- transformation and let 2 denote the elements of AA',
also téansformed by Fisher's 2. Sum (2Z-Z)2? over the upper or lower
triangles (without diagonals) of the respective mairices. If K is the
: sampig‘size, n the number of variables the test of significance is
epregsed by: If v '

x2 = (N-3) ] (z-D)2

with %n (n -1) - kn + }k (k - 1) degrees of freedom is insignificant
at a presumed level of significance, the factor extraction is assumed
to be completed.

Remarks:

o %;;- » is appliea .

to the elements of R and AA' to obtain their normal distribution

21
- (a) Fisher's Z-transformation, Z=tanh r = %log

" (b) Burt recommends this test in his 1952 paper (Reference 2') as

the'most useful available when current factorial procedurcs are employed”, . -
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Sokal (Reference 36) in his comparative study obtains some correct

results and points out the fact that small correlation matrices may
not provide enough degrees of freedom,

4, Lawley's Chi-squared Test
In the following we will consider a statlstlcal test for the

- o number of common factors. This test should be used, though, for
large samples only and with ones in the main diagonal of the corre- -

lation matrix. _
Let N denote the sample size, |R| the determinant of the

matrix of observed correlations and IPI the determinant of the
maximum likelihood estimator (P AA + a2 where factor loadings
s - are determined by the maximum likelihood method ) of the population

correlation matrix. Let the variables have a multivariate normal

distribution. Then

~

chi-square = x2 = N log +§+ (4)

v = é-[(n ~Kk)2 -n - k]

degrees of freedom is used to test the hypothesis that k common

factors adequately explain the correlations at an assumed level of

significance.
Lawley. (Reference 42), who derived the above formula, simplified

it, by approximation to the‘following x2 formula to be examined:

) n r2, . '
¥ o= N ] A (5) (corrected
i<j=1 71 73 residuals)

where ;}j denote the residuals obtained by

with Pij being the elements of P , that is the (maximum 1i.ejih02d

estimated) reproduced correlations.




Remarks

(a) Harman (Feference 2) states that, usually, that is by other
than statistical means, one undercstimates the number of statistically
significant factors, compared with the number of factors one obtains
by application of the x2test.

(b) As Harman points out, it is reasonable to apply the test
also to problems where the maximum likelihood method is not employed
to estimate § if one draws only a conclusion in the case where the

xZvalue is found to be insignificant. In case the x2value is signifi-

cant, though, no conclusion can be made since it is possible that a
maximum likelihood factorization gives better results, '

(c) Rippe (Reference 48) arrives at a formula identical with the
-likelihood, ratio (equation 4), his development not being specifically
dependent on maximum likelihood estimates of factor loadings.

(d) An experimental study of the test was furnished by Henrysson
(Reference 49),

C. Miscellaneous Tests for (ompleteness.

1. Index of Completeness of Factorization
If the uniqueness 83 of a variable X, is broken down in

J
unreliability c§ and specificity b§ , that is
2 - 2 2
a; = bfte
3 i3

then the index of completeness of factorization is defined by

100 12 ”
Hy = Z——:jéy_ (hJ the communality).
3
This index can well be used to decide whether factorization was carried
too far ¢r not; for almost no variable Xj should H, be in excess
of 100. Especially in the analysis of psychological tests into common
factors, this analysis should not be carried to the point vwhere rezl
specific factors disappear.

2. Listing cf Other Completeness Tests
There does exist a varietv of other methods for checking completeness
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of factorization. Since they are partly simple ones from the early
days of factor analysis or do not have important effects on factor
analysis, we will indicate them here only, referring to the papers
where they can be found.

(1) Plotting the distribution of the residuals after extraction
of k factors and comparing this distribution with the normal
curve is described in Cattell (Reference 24, pp. 297-298) as complete-~
ness check. .

(2) See Mosier (Reference 33)vfor a comparison of six simple

" methods., A short description of three of these methods, which were

found to be rather effective, is given in Cattell (Reference 2u)._
(3) See Reyburn and Taylor (Reference 50) for a method which
compares the frequency Jistribution of the quotients of a residual
over the standard error of its corresponding original correlation
with the normal distribution.
(4) Coombs (Reference 51) suggests a test for the centroid

_ solution by counting the number of negative signs left in the

residual matrix after every possible variable reflection has been
carried out and compares them with the number C of a table set
up by Ccombs, which depends on the number of variables.

(5) Swineford (Reference 52) correlates.the original correlations
with the series of corresponding residuals and continues factorization
until this correlation becomes insignificant.

(6) Hoel (Reference 53) attempts in his paper, less fruitfully
though, the development of a significance test for the number of
common facters, See also Burt (Reference 3%) for a short outline
of the method.

(7) Wilson and Worcester (Reference 54) describe a chi-squared
test,

(8) Young (Reference 55) derives'an index of clustering.

(9) In the situation where we are dealing with component
analysis (unities are employed in the main diagonal of the correlation
matrix) Hotelling (Reference 56) and Bartlett (Reference 57) have
provided statistical tests for the number of significant factors.

{10) Humphrey (see Fruchter, Reference 35) defined a completeness
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criterion which takes into account the sample size and depends on
the loadings of only two variables. He multiplies the two highest
loadings in a column of the centroid factor matrix and compares the
product with the standard error of the zero correlation coefficient
to establish the significance or insignificance of the factor under
consideration,

(11) It is noted for information that there exists a listing of
twenty-five completeness criteria by Vernon, et al. (Reference 58).

4,6 EIGENVALUES AND THEIR BOUNDS.
A critical problem in factor analysis is the determination of the
sample size, denoted by the number of observations N . This problem

can be seen with respect to direct dependence of N on the number of

_variables or with respect to the factor analysis one wants to conduct,

The question for the dependence of the number of observations on the
number of variables is answered by factor anziysts by such rules of
thumb as: the ratio of the number of observations to the number of

variables shall exceed 3 (or shall exceed 5); the number of observations

minus the number of variables chall exceed 80. No good mathematical
means has as yet been obtained for a better determination of this
relationship. One indication of this relationship can be exhibited,
however. On a geometrical basis (see 2.4) one finds that, if n =
number of variables, m = supposed number of common factors and the
factors are considered to be uncorrelated, then the m common factors
and ' n ' unique factors zre represented in N-space such thatm+n < N,
which determines: N > m + n.

The investigation reported in this subsection takes the second way
of approach to the problem, namely to consider the sample size N in
the light of the factor analysis to be conducted. In considering at
all the problem of how large the sample should be, we are assuming,

.that if we would arbitrarily choose an N without reflecting upon

anything, we might obtain less "reliable" factors. Here we want to
understand by a reliatle factor a factor whose loadings would change
only little if the factor analysis would be conducted on a correlation

matrix of the same variables but with a larger number of observations.




The solution to the problem was attemptgd to be found in

statistical properties. Two assumptions had to be made: firstly,
the assumption that all elements rjk' of the correlation matrix R
be greater than 0, denoted by R > 0, and secondly, the assumption
that the population of pairs (Kji’Axki)’ i = 1,..., N, from a sample
of which each element of R is computed, satisfies the bivariate normal
distribution model, The first aséumption is not so stringent, since
ﬁany correlation matrices with small negative entries can be reduced
to this form, the second assumption is one which is méstly made to
gﬁarantee statistical considerations on rik‘ The case, where some
elements of R are equal to zero, can be considered also, if only .

R satisfies the dirreducibility" properties, which will be intro-
duced a little later.

The statistical means to associate sample size N with the loadings

of the factors, obtained by factor analyzing the correlation matrix R,
is found in the confidence intervals, which one can compute for each
element rjk of R . By forming confidence intervals we assume that
the observed correlation ccefficients are only estimates of the true
population correlation coefficients. “The larger N °"is, the more does
the observed coefficient approach the population coefficient, so that
the difference between the observed Pix and the confidence limits
can be called the error due to N, Now we are interested in how these
errors propagate through the factor analysis. Since the most popular
method for obtaining a factor analysis of R "is the principal-factor
method, where the factor loadings are directly computed from eigenvalues
of the correlation matrix, the question we ask is the following: How
much does the error, introduced into the correlation matrix R by way
of the fact that the elements of R are oﬁly N-dependent estimates of
the true correlation coefficient, influence the eigenvalues of R?
To obtain information about this, the folléﬁing procedure is suggested.
For each rjk confidence limits are computed according toithe technique

outlined in Section 2.5. For each r, we obtain two confidence limit-

. (1) " (2) . (1) (2)
values, which we denote by r].kv and r].k 1ith rjk < rjk < pjk
If an ij is computed to be insignificantly different from zero, we

" insert the value 0.001 (or if there is an rjk < 0.001, an even smaller

107




value than 0,001) for it into Ry (since we do not want any actual
zero values in % ); the value rjk itself, however, is inserted
in Ry. Expressing the above in matrix notation we obtain if
rjk e R, rié) € R, and rgﬁ) € Rzt Ry <R < Ryp. Then we conduct
principal- factor-analysis on the three matrices Rj, R, and Rj.
We encounter some difficulties here, If we assume ones in the main
diagonals of R, Rj, and Ry, then R is Gramian; while R; and
R, are symmetrical but not necessarily positive semidefinite. oOn
the other hand, seldom is a factor analysis done on R with ones in
the main diagonal; rather squared multiple correlations or other
communality estimates are inserted in the diagonal. So, also R
differs slightly from being Gramian. How bad it is non-Gramian
is determined by the number and size of negative eigenvalues, If
they are small and few in number they can be neglected. We make
use of this fact for the eigenvalues of Ry and Ry, If N is
large, Rl and R, approximate R closely, so thét they will not
be too non-Gramian, .

Under the assumption that R > 0 also Ry > 0 and R, > 0.
This is based on the fact that the confidence intervals for each
element of R do not exceed over the zero point. If they would
exceed over the zero point, the population correlation coefficient
could be zero, But this is excluded from consideration since each
correlation coefficient is first tested for this hypothesis and the
confidence limits are only computed if the population coefficient is
not equal to zero.

Thus, since Ry <R<R, and Ry >0, R; >0 we can express

Ry and R; as: Ry = R-Ej, and R; = R+E;, respectively,
where E; has only positive entries and E, has positive and
(or only) zero entries, ,

Our objective will now be to show the following : If rii) and

rgﬁ) represent the lower and upper 95%-confidence limits on the
correlation coefficient rjk' by having defined the rsi) and i)
values if LI is insignificant as above, such that riﬁ) < Tk < rii)g
and if rgﬁ)e Ry > 0, rjk e R>0, and rSi) € R, > 0, then

Ay <A g Aé, where Ay, A, and )ljare the largest eigenvalues obtained
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for the matrices Rj;, R, and Ry,

Since the loadings of the first factor are directly computed
from the largest eigenvalue, the result, which we will prove below,

" clearly links the loadings (by which we judge a factor analysis to

be reliable) to the samplé size N: the largev‘ N is, the smaller
will the interval (rgi), 35%%’) be, and correspondingly the
interval (xl,xz). '

Noiw let us prove the statement A3 <A < Az{under the above
made assumptions). As we pointed out earlier in this subsection,
we can make the assumption R 2 0, but then R has to satisfy the

irreducibility condition introduced by the following

Definition 4.1: Forn 22 an n xn matrix R with real
elements is called reducible if there exists an n x n permutation
matrix P ' (defined as a square matrix which in each row and in
each column has some one entry unity, all others zero), such that

PrET = i 1,2

where Rj ) is an r x r submatrix and Rj,2 is an (n -r) x (n = 1r)
submatrix’with 1 s r< n. If nosuch perﬁutation matrix exists,
then R 1is called irreducible, If R isa 1x 1. matrix, then

R is irreducible if its single entry is nonzero and reducible other-
vwise. ' ’

In the proof of our étatement we will have to use‘eitheﬁ_one of

two theorems, according to the assumptions made on R ., If R> 0,
we shall use Perron's Theorem (Theorem 3.8), if R 20 and R is
irreducible we shall use the following Theorem 4.4, due to Froebenius,

an extension of Perron's Theorem to irreducible matrices.

Theorem 4.4:  An irreducible matrix R > 0 always has a positive
eigenvalue ) which is a simple root of the characteristic equation.
The meduli of all other characteristic numbersvafe at most A . The
eigenvector corresponding to A has positive componeﬁts and is essenti-

ally unique (up to scale factors).
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The proof of Froebenius' Theorem can also be found in Gantmacher

{Reference 22).

Proof of the statement A < A < Az, vwhere Al is the largest

eigenvalue of R , 1A the largest of R , and »AZ is the largest of

Rz' If x is an eigenvector belonging to A, and L3 is an
eigenvector belonging to A; we have
Rx = Ax ' (6)

R,X, = A,X (7)

He have

R, = R-E , E >0,

and taking the inner product of Equation 7 with x we cbtain:

x|Rx) = A (xlx))

(Rlx]xl) Xl(xlxl) since R, is real and symmetric

[(R - E)) xlxl) = A (x]x,)

(Rx|x)) - (E;x]x;) = A,(x]x))
Ax]x)) - (Epxlx)) = A (x]x,))
A - (Elxlxl) = xl

o

(x]x‘) is not equal to zero, since x and X, have only positive
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components, according to Perron's (or in case it is applicable,
Froebenius') Theorem, applied to R and Rj. So the term
(E1xl%3)/(x]xy) ‘is positive and thus A1 < A. In the same
manner it is proved that X < 1A,, with the equality holding if
E, is the zero matrix, which makes (Epx|x2)/(x|x;) equal to zero.
Some remarks about the result shall be made next. From the
analysis of the principal-factor method it follows that:

. n
Ay = Z: ag_ s
j=1U) 1 )

- and
Xz = as
j=l(2) 11

or, the largest eigenvalues of Ry, R, and R; are equal to the
sum of the contributions of the first factor (in each respective factor
analysis) to the total communality of each analysis. The length of the

interval for A , namely the difference

n
. 2 2
-Zl ((2)651 1

e 2 ¢ 2
Xo = A = i a%s
27 "M I jX W Ty

j:l =1

is tﬁe largest difference which we can get between the sum of the
squared factor loadings of the two first factors, obtained by factor
analyzing Rj; and R2. The difference approaches zero when N
increases, since the length of the interval for A then becomes
smaller, '

It was wished to determine the sample size N. The difference

n .
I, .a% - a2
j=1(2) r (N

indicates how much the contribution of the first factor can vary in
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dependence on N. In other words, it can be checked whether an

assumed N is large enough so that the variation of the first factor

contribution to the total communality of R does not exceéd a given
value (which could perhaps be computed as a percentage of the total
communality).

Example: An example was computed to show the proposed method.
The problem of 24 psychological variables, whose correlation matrix
and analysis are reported in Harman (Reference 2, page 137 and page 18%)
was taken for this example. The one insignificant negative value,
which Harman's matrix contains, was changed to an insignificant positive
one in order to meet the requirements for application of Perron's
Theorem. The sample size as given in Harman is N=145,
Let us briefly outline the kind of computations done for the
example. .
(1) The two matrixes R, and R, were computed according to
the discussion in this subsection, The value 0.001 was inserted into
R, s while the values Ty themselves were inserted into R, when
rjk was found to be insignificant.
(2) Squared multiple correlation coefficients were computed for
the three matrices,
(3) Factor amalyses were conducted on the matrices R,, R, and
R;. The eigenvalues and factor loadings were obtained.
For a comparative study let us now consider the obtained values.
We list the postive eigenvalues in Table 4 and then the first-factor
loadings, computed from the 3 first (largest) eigenvalues in Table S.
It is also interesting to list the following data:

Total Original Sum of Positive Sum of Negative
Communality Eigenvalues Eigenvalues
Ry 7.9184 9,8388 . 1.9204
R 11,8761 13,4935 1.6174
Rz 21,6238 22.0108 0.3870

112




Table 4
The Positive Eigenvalues of R;, R, and R,

.Ryeigenvalues . R-eigenvalues Rieigenvalues
A\ = 4.3884 £ X = 7.6665 A, = 10,8149
1.6844 ' 1.6634 2.2210
1.1014 ) 1,1785 = 1.6392
0.8292 0.9212 . : 1.4155 -
0.u342 0.4319 . 0.92u5
0.3608 ’ 0.4064 0.8684
0.2811 - 0.3199 0.6861
0.2512 . 0.3024 ) 0.6596
0.2136 ‘ : 0.2513 - 0.5467
©0.1482 0,1759 . 0.u625
-0.1084 - . 0.1082 . 0.3760
0.0379 o 0.0433 - ' 0.3235

: 0,02u6 - 0.2860

s 0,2108

10,1943

0.1598

0.1358

0.0576

0.0286

Interpreting the obtained resulfs, the following can be said:

(1) The 3 matrices éan be considered as not too non-Gramian,
the size of the negative eigenvalues being small. Especially, the
number and size of the negative eigenvalues of - R, are small. Here,
though, a difficulty arose when a squared multiple correlation co-
efficient, as estimate of commupality, turned out to be larger than
one (based on the fact that R, with ones in the main diagonal
has not,as R does, the representation as. R = ZZT/N).

(2) Table 5 shows the expected results that all factor loadings
of the three first factors--as derived from positive eigenvalues and
eigenvectors--are positive.

(3) It is interesting to note, that both R ‘and R show four
distinctively large eigenvalues while there is a sharp drop in the
size of the eigenvalues after the fourth ones. Each time the four
. eigenvalues account for more than 95% of the total original communality
Harman suggests the interpretation of four factors, which is applicable

to the results of R; . R, shows six distinctive eigenvalues with
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Table §

The First-Factor Loadings Computed
from the Three First Eigenvalues

Ay = 4.,3884 - A = 7.6665 A= 10,8149

factor loadings factor loadings factor loadings
0.4293 0.5952 0.7012
0,1594 0.3751 . 0.4784
0,2222 0.4297 0.5637
0.3130 " 0.,4839 0.5906
0,6337 0.6901 0.7729
0.6336 0.6883 0.7620
0.6291 0.6728 0,7407
0.5930 0.6819 0.,7595
0.6563 0.6898 0.7540
0.274Y4 0.,4649 0.5586
0.3711 0.5588 0.6725
00,2643 0.4669 0.5873

- 00,4308 0.6038 0.7181
0.2016 0.4268 - : 0.5544
0.1465 0.3896 0.5334
0.2897 0.5144 0.6395
0.2327 0,u4631 0,6180
0.2877 0.5177 0.6614
0.2284 0.4511 0.5702
0.4831 0.6164 0.7288
0.u252 0.5969 0,7285
0.47u6 0.6129 0,7229
0.5827 0.6895 0.7876
0.5174 0.6532 0,7621

four of them béing over one. BKut one has to consider 11 eigenvalues
to_account for 95% of the original total communality, while % (6)
eigenvalues account for slightly more than 70% (80%) of the original
total communality. - .

(4) As for the main objective, the determination of N, the
result shows that N = 145 is too small to furnish a reliable factor
analysis, Already the confidence intervals are very large. For
example: .

0.013 < 0.176 < 0.330 for a small rjk
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0.635 < 0.723 < 0.793 for a large o

The interval on the first eigenvalue is consequently also large:
4,3884 < 7,6665 < 10.8149, so that the difference

i

10.8149 - 4,388Y4

A2 =~ M
= 6.4265

is even not expressible as a reasonably small percentage of the
original total communality of R. ‘ |
Disregarding R, (for its difficulties of obtaining communalities

larger than one) and considering only R and 'Rl_ we compute

A - = 3,2781 which is 27.6% of the original total communality
11,8761, still considerwbly high. )
It must be concluded, that the sample size : N = 145 is too small

~ and it would be desirable to have more observations and to do the

factor analysis over, On the other hand, both the Ry and
R-analysis yield the same number of factors used for interpretation,
which might suggest the contrary. 'This emphasizes the fact, which
also Harman indicates; that proper statistical considerations are

often lengthy but -do not furnish better results,

4.7 FACTOR SCORES
The computational problem of representing observed variables

in terms of hypothetical variables or factors F - is only partly

solved when the factor loadings A are computed. The factor loadings
serve to describe the number of factors and the saturation of
variables by a factor. And for some purposes, such as interpretation
of factors, the loadings are sufficient. However, the complete
representation is obtained only when the factors themselves are

also computed.

In the case where the factor pattern takes the form

2 = AF
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due to inserting unities on the diagonal of the correlation matrix,
i.e., no unique factors are allowed or postulated, the common
factors F may be solved for directly since the matrix A is a
square nxn nonsingular matrix, Indeed

F = A7z .

When commnalities are placed on the diagonal of the correlation
matrix, the number of common and unique factors is greater than the
number of variables, and therefore the factor loading matrix is
singular with no inverse, In keeping with the original assumption
of factor analysis that each variable is a linear function of the
factors, it is now assumed that each factor is a linear function of
the variables. However, since there are more factors than variables,
the factors defined by the origiﬁal linear form can only be estimated
in a least squares sense by the linear form,

= ‘?’plzl"""+ 8pnzn (p =1,2,...,m) . ' , .

'U’dl

It is shown (Reference 2, p. 340) that

- T, =1 . ' :
F = SR 2 (8) i
P P : ;
gives least squares estimates of the factors, where the subscripts
denote colums. Factors estimated using Equation 8 have zero mean
and a standard deviation close to one but varying from factor to
factor.
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Section V

THE ROTATION PROBLEM

5.1 INTRODUCTION

After we have discussed factor solutions and problems pertaining

to them the next step in factor analysis is rotation. This problem

is therefore considered in this section. »In>5.2 the rotation problem
will be stated. 5,3 gives a survey of existing rotation techniques., é
A specially interesting problem is the problem of interpreting oblique ;
factors., Many factor analysts prefer to keep to orthogonality since i
the problems, raised by the fact that in fhe obli@ue rotation, factor
pattern and factor structurc are no longer equal, cannot satisfactorily ;
be taken care of, On the other hand, an oblique solution might be the only ’§
adequate solution to a gi;en problem. Therefore the important topic of ‘

interpretation of oblique factors is taken ﬁp inIS.u.

§.2 THE ROTATION PROBLEH# - - ’ - » : :
The second part of every worthwhile factor analysis is factor
rotation., This procedure involves éccepting a factor pattern (and other :
matrices in the cblidue case) with an already determined number of factors %
and performing sequence of. iterative matrix operaticns on it to re-orient :

the factor reference frame according to préset. honndary conditions
or constraints, The basic correlation matrix with communalities is
preserved and must still be the result of FFT (in model form).

There is an infirite nunber of ways to rotate the primary factor
pattern which resuits from, say, & centroid or principal components
analysis., Consider for a mcment the analogy of defining the loci of
points equidistant from the origin of a Cartesian coordinate system,
each point simply representing another orientation of the end of line in
2-space, A graphical illustration of a typical two-factcr rotation where
the variables are represented by points in a plane i$ shown below.

The rotation of the reference framé to a "preferred" or "Simplified”
. position is both difficult and ambiguous. It is this process which is the

cause of much controversy concerning the definitién of a preferred,
simplified or best solutién. There have been and still are several

schools of thought on this issue dating back to the origin of factor
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analysis., The most pupular definiticon is one developed by the

psychclogists and is used extensively today--simple structure. Other

structures which are used from time to time include multipli-group,
uni-facter, and bi-facter and are characterized by a preset factor
pattern intc which the loadings are to be fitted, Simple structure,
on the cther hand, represents a quasi-definite ordering of a desirable
multiple-factor solution based on factor interaction expericnce of the
behavorial scientists., Thu resultant pattern initially was one containing
mestly very high and very lew lcadings distributed in such a way that
the fcollowing three conditicns were mot:

1. each rcw should cuntain at lcast one zero

2. each column should centain at least 2s many zcices as there
are common factors

3. for cvery pair «f factors there should be at least m variables

which do not luad high on bcth foctors ( m being the number of common factors)
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These conditions were first established by Thurstone (Reference uu)
>and later extended by him to provide "insurance"in his own studies as
follows (Reférence 25):
1. each row should contain at least qhe'zero '
2. each column should contain-at least as mahy zeros as there are
common factors . _
3. for evéry pair of factors theré shpuid be several variables
which do not load high on both factors ‘ ’
. 4, for every pair of factors a 1arge.proborfion of variables
should have zero loadings on both factors when there are more than three
factors » ‘ )
"5, for every pair of factors there should be only a small number
of variables with nonzero loadihgs on both factors.

If simple»structure s decided to be the acceptable format for a
factor pattern, one may choose from Several factor rotation techniques, each
of which provides'a élightly different variation df the main theme, If ’
another factor structure is desired, rotation may be exceedingiy complex

if not impossible!

5.3 SURVEY OF ROTATION TEChHNIQUES )
In genecral there are two distinct categories of factor rotation--

orthogonal and coblique--which differ widely both in ccneept and inter-

pretation. The idea of strictly uncorrelated factors in the orthogonal
' structure, whether simple structure or not, has contributed significantly
to the extensive usage of the orthogonal solution in a final analysis.
Simply summing the squares cf all the factor loadiﬁgs for any given variable
yields its common factor variance, thus, the importance of -an individual
loading is easily determined. This is not at all the case in oblique
factor structures where nonzero correlations among factors necessitate
rather tedicus matrixvmanipulations which heavily tax the skills and
. patience of the user. A simpler method to determine factor significance
is not yet known but the problem is considered later on in this section.
It is indeed unfortunate that interpertation cvase has dictated the
unguesticned popularity of the orthogonal methods since. the shortcomings
©f a lincar mcdel are confounded by a further restriction §f uncorrelated

factors, A more realistic model (naturally there are many problems which
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f£dll into the "straightforward” class whereby all of the common factor
variance can be accounted for by the first few factors and furthermore
can be interpreted as definite orthogonal physical factors) in the physical
world is, of course, the oblique factor structure if the intent of the
analyses is one of discovering physical entities. In data reduction
problems the orthogonal patterns are quite acceptable. i

Helpful in the selection and comparison of simple structure rotation
technique¢ is Table 6 cxtracted in part from Harmon (Reference 2, p. 310)
where short expressions for Quartimax and Varimax orthogonal rotation
techniques and Oblimax, Quartimin, Covariming Oblimin, and Kaiser-Dickman
oblique rotation techniques are given., The following notation is adopted
for the table: ’

(ajp) = initial factor ma*rix,
(bjp) = final factor matrix,
(vjp5 = final factor structure matrix.

It should be noted that major differences in these techniques occur both

in concept of a "best" simple structure and in computation procedures. The
orthogonal rotation problem is pretty well resolved by Varimax, Quartimax
at best being a good estimate., The oblique techniques require enormous
computation efforts and generally result in "not quite" solutions which

call upon Cattell's Maxplane, or Rotoplot, for polishing.
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5.4 INTERPRETATION OF OBLIQUE FACTORS
A. Introduction '

The factor analysis model involves the simultaneous linear descrip-
tion of n wvariables by m common factors and n unique factors,

Z, = a“}‘l + alzpz + e almt‘m + alul

= a, + a, soe + a,
Zj ajlf'1 anFz 4 c0e 4 aijm aJQ) (1)
Zn = anlpl + anzrz + -f- + anum + anUn

The factors are, of course, hypothetical and their description is usually
given by a pattern matrix A = (ajp) of common factor coefficients, and
a structure matrix S = (sjp)’ the set of correlations between each
variable and factor.

The invariant part of a factor analysis solution is the subspace of
common factors, common-factor space, defined by the set of standardized
column vectors Fl sevey Fﬁ . The n~space of standardized variables
Zj lies hopefully close to the m space of common factors and each
variable is projected onto common-factor space by its unique factor,
?juj' Selecting a particular solution for the factor analysis model
corresponds to selecting a set of basis vectors {Fl srees Fm} to describe’

the invariant common-factor space.
The projection of variable 2, on common-factor space is Zj, the
prediction of zj from the common factors alone.

zj = ajlrl + ajzrz + 000 ¢ ajmrm' N (2)

so that
2, = 2.4 a.U.. 3)
3 i i (3
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Thus the variance of Zj is

_' ) ) . T - . 2 . .“.‘, .
(zj|zj) = 1= (zjlzj).+ 233-(25]”3-) + aj(ujlu].)v , _ ()

The variance of Zj is called its communality hjz. Because the unique

facfors are orthogonalvto all common factors, (ZjIUj) = 0 and since the
variance of the unique factors is one, Equation 4 becomes
Sy o2, 2
var (Zg) = 1= b3 + a5 | (s)
The communality h? is the variance explained by the common factors.
Both 'hj and a, are fixed for any factor analysis solution, hence

for the entire set of particular solutions generated by rotating the

common- factors to different bases for common-factor space.

B. Problems with Oblique Factors
In order to understand intuitively the dimensions of common-factor

space or to identify factors it seems likely that an oblique set of
factors is preferable., In addition, a factor which has been placed
close to a group of real, observed variables would seem more likely
observable itself, .

However, there are serious problems involved in the interpretation
of the output of oblique rotations which have discouraged many workers
from leaving orthogonality. The pattern and structure matrices are not
identical and they are both fricky. For some examples let us consider
two-factor space: ij = alel +'aj2F2 . A variable may be_uncoprelated
with a factor F; and yet have a high }oading ajl on it or it might
have a large positive strqcture value sjl and yet a negative loading
3, (See Figure &)

The basic difficulty in interpreting the structure matrix, and part
of the recason for these seeming discrepancies between structure and '
pattern, is that the variable~factor correlations are affected in the
oblique case by the correlations among factors. This will be explained in

more detail later. Moreover, two variables may be correlated with one
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Figure 6, Relation between Factors and Variables

factor as high as ,707 and yet be totally uncorrelated themselves, making
it difficult to pick out groups of variables and fit them to factors by
examining structure alone,

The problem with oblique faétor patterns is that the sum of the
loadings squared for one variable

a3
ps1 P

Rk}

must no longer equal the communality or even be less than one, as in the
orthogonal case, Although rotation tends to purge middle-sized loadings,
it may result in loadings greater than one, or in several large loadings
which indicate not so much linear determination as they do that the factors
are highly uncorrelated (or correlated) as in Figure 6.

We may state the problem: given the linear representation of éj
as in Equation 2

2, =a, F +a.,F + ... +a.fF
J11 J2 2 mm
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how "important" is each factor in the determination of all the values of

the vector Zj .
The contribution to the variance of Zj is the measure usually used.

The variance of Zj is

AGITE S N SRR i)
(z.12.) = h5 = a, a; (F |F ) = aj a. re . (6)
F
30 SR IR L S-S | LN
When the factors are. orthogonal, it is
- [0, psa
r = (F |F) = ' PF
FoFy pla’ L, P=a
so that
2 _ 2 2 2
h = a} + a“ voes 4+ 3% . .
;% e gy, * A ‘ v (7)

Thus the contribution of each orthogohal»factor to the variance of Zj
is the square of its loading, This clean resolution of variance éxplains
why orthogonal factors may be easily interpreted; their relative impor-

tance in determinihg all the values for a variable can be séparately

evaluated.
, However, for obiique factors the terms containing e p P74,
do not drop out and we have Pa
b2 = a2 +a% + ese+a? + 2fa. a, v + e+ 4+ a. a.nr. .
j j1 j2 jm %512 F F 51%m'F F
12 1m
(8)
+ 2(3. a, r + ¢** + a, a,r j + e + 2(a. a, r )
FF F -
327 33°FF, _ j2"jm Fz n jym-1 jm Fm_lFm
The terms a2_ are called direct contributions. The mixed terms may

be named two-factor interactions and they cause the problems. These

interactions are not variance "contributions" because, for one thing,

they may be negative., They may be looked upon best as corrections
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applied to the direct contributions agp due to the tendancy of one

factor to vary with another,

One method of separating the total variance into components for each
factor is to simply divide the interaction into halves and assign a half
to each factor. This results in:

i, zanxjpk‘r ’X*‘j :prr

2 F-3 a0

hj Z a:'p . Fp + tag X ajp 3 P

2 [N

hj ajlsjl + + ajmsjm . | (9)

- The terms of Equation 9 might be said to approximate the contribution
of each factor to the variance of Ej' In the orthogonal case it reduces
to Equation 7 and it often gives an enticingly clear picture. But it also
results in negative values whenever ajp and sjp are of opposite sign,
This is one indication that the interactions are simply that--interactions--
and cannot be resolved into shares.

Any procedure such as halving the interaction which gave us a matrix

of contributions to variance could generate an orthogonal paftern simply
by taking the square root of each element, Therefore, because each set of
factors has only one pattern, A, no oblique factors may be so resolved.
When the factors are correlated, the analysis of variance model (separating
the sums of squares) can no longer be used but a new model must be formulated.
(Reference 61, p. 464, p. 634),

C. Factor Analysis and Regression Analysis

To facilitate the development of a statement concerning the contri-~
bution of oblique factors to variance, let us show that the factor pattern
equations are a set of classical regression equations of the variables on

m common factors.

The factor analysis description of a variable Zj
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= . . see . . a. 0
Z 331F1+33F + 4+ a,F +'an (10)

is simply a linear equation of the variable Z_j in terms of m+l others,
It makes no difference mathematically that the one is observed and the
'othefs hypothetical. The -value of Zj"predicted by fhe common factors
is Z, .
ijl § ses 4 aijmv | ‘ ' an
Harman (Reference 2, p. 18) proves that Equation 10 is a regression
equation but we may just as easily prove the more pertinent theovem
that Equation 11 is a regression equation. ' '

The sum of squares of residuals for Equation 11 (over the N
values of the vector) is ’

- 2 BRI
l(zji Zs4) [z, - 2 | (24 23] a

[ s §=]

i
Since a§ = 1~ 2, § = 1, *++ , n, are unique for any factor analysis
solution they may be regarded as at a minimum for a set of factors (this
assumption also defines the factors as least squares estimates). Hence
Equation 11 m;y bé’regarded as a least squares solutionvand a regression
equation with a standard error of estimate aj.‘

A regression equation is usually represented:

Y = blx1 + ‘bzxz + e bmxm + €

or simply in vector notation

Y = XB (12)
where Y is a least squares estimate to Y; Y, Y, X are score vectors:
B is a coefficient vector. We may easily imagine Y and B extended
to matrices of column vectors. The factor analysis'model uses row vectors
for scores and linear coefficients. Assuming that all variagbles are

standardized we may let
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g =Y
F' = X
A* = B

and

AF
F'Ad 'iS eduivalent to Y = XB

NI
"

Thus the factor pattern is a set of regression coefficients,

The regression analysis solution for B is

XY

= X'XB

B = (x'%) “Ix'y (13)
The C matfix is usually defined

c=(x'x) "1
and then

B=CX'Y.
In factor analysis we ave given

(X'X) = FF' . s | '1 (1)

so that

c=g¢!

and any uses for C may be referred to _o“l, the inverse of the matrix

of factor correlations.

The multiple correlation of Yj on Xl,..., Xm is defined as

-
Y.
11
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(Section 2.7), Thus, letting q stand for all xp, P =1,..., m, and using

standard notation for multiple correlation:

X, o (¥.]v.)
j.Xl...Xm «+qQ

j /——-——-:r—.——-
o sl
But

Y, =Y, +aU, , (Y.]U) =0, and (Y.]¥.) = 1
3 i JJ’(JIJ) > (JIJ)

- 80 that

. (¥.)¥.)

-/o.—"-_—-,

e (Y.]t,) =h
Rijq (CATS R

3 (15)

Hence the squared multiple correlation of a variable on the m common

factors is its communality, or its explained variance.

D. A Proposed Méasure for the Importance of Oblique Factors

Methods usually associated with regression analysis enable us to
make a statement regarding the contribution of correlated factors to the
variance of their dependent variable, "It concerns not the direct
contribution which we have shown to be meaningless in the oblique case,
but the amount of explained variance which-a factor adds after all others
have been taken into account, Although this measure is probably as much
as can be said about the separate effect of a factor, it is a natural and
useful statement.

As stated before, the variance due to oblique factors cannot be
simply divided among them, due to the two-factor interactions--the tendency
of factors to vary ‘together, Hence we might search for a way to examine
the relationship between a factor and a variable with the other factors
held constant. We tend to assume that if a variable and a factor are
correlated that the factor is (mathematicaily) affecting the wvariable;
but with correlated factors the observed correlation-between variable

and factor may be spurious--the results of limitations placed on their-
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correlation by being both tied to a second factor. Ezekiel (Reference 23,
p. 195) states the other possibility: "It is evident that a mere surface
examination of a set of data cannot reveal which independent factors are
important and which are unimportant. A factor which shows no correlation
with the dependent variable may yet show significant correlation after
the relation to other variables has been allowed for."

Consider three correlated variables. If the correlation of two
variables were measured for groups of fixed values of the third variable and
a weighted average formed, the correlation would probably be different. We
called such a measure partial correlations (Section 2.7) and it may be
written in terms of simple correlations.

} TP oW 4
" = T127T13%23

12.3 (18)
' l-r}, A-rl,

This value is the correlation of one and two with the disturbing effect
of three removed. (A proof of Equation 16 may be found in Reference 62,
p. 479) The relationship between partial correlation and multiple correlation
{explained variance) is given as follows (Reference 63, p. 3uu) for the
regression of Y on 4 factors ) '

- pl n2 —nl pl .
1-RE g3, = (1mrg)(A-riy (M-ryy 1p)(1-Ty, 4p3) (17)

This expression may be extended to the regression of Y on X, to 'xm
by multiplying the right hand side of Equation 17 by appropriate terms in

the series. Thus if we let q represent all factors but those to the left
of the dot and in parentheses beside q

1“R§.q' = (1’R§.q (xp)]( l’rixp.ﬂ

The order of X's does not matter; Xp' may be any of the factors

Xys **0 Xm. Solving for the partial correlation squared

-R2 - ~R2
X .8 = (l RY'q‘xp’) ( ! RY'?_) (18)
P 2 !
ll'RY.q(Xp)l
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For four factors the partial correlation squared between Y and X2 becomes

‘ 2 2 :
2 : B (l-&l .134)_‘(1-&1 .IZJM)

r =
Y2 134 2 .
(- Ry 13d)

(19)

Simplifying the numerator of Zquation 19 yields R§‘123y - R§_13u .
Recalling that multiple correlation squared equals communality and gen-
eralizing to m factors, the numerator of Equation 19 is seen to be
the difference between the explained variance of Zj as a regression
on all m common factors and its variance as a regression on all the
common factors but one. . Let thisvdifference for the omission of factor
Fp (Xp is equivalent regression langu;ge) be denoted by v?p .

This is the proposed measure, It has shown up while examining the rela-
tionship between a variable and a factor with thebdisturbing effect of
other factors, due to co-variance, removed, as it is implicitly with
“independent factors. o o '

We may define the unique contribution to variarce v?p of factor

Fp for variable Zj ‘as the additional variance explained by factor p
after all the variance of Zj explainable by the other factors Fk,k Zp

has been taken into account, More formally

.2 . 2
v, H - .
ip R\’]..Fl,...,Fm RYj.Fl_,...,Fp_l(Fp)Fpﬂ,...,Fm

2 2 v
= R - R (20)
Y.. Y. .q(F
ja 3 q( p)

and we state a theorem which is proved at the end of this section. When

v%p is the unique contribution to variance as defined above

b2 ‘
2 _ _Jp - .
vi_ = (21)

or in factor analysis notation
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jp °—1 _ (22)

Due to the interactions this expression is about as much as can be said
about the separate “importance" of the oblique factors to the explained
variance. It represents the part of the total variance which must be
explained by that factor or be lost--a natural and meaningful measure.

Furthermore, the coefficient v2

is a generalized measure for all sets

of factors, orthogonal ones being a special case which happens to sum to the

total explained variance. This phenomenon exists because the interactions

are zero and thus a factor's contribution cannot be particularly picked up by

another factor. Notice that then ¢-1 = I and Equation 22 reduces to

2 - a2
Vip jp

For oblique factors

m

) v§ < h?

p=1 P i

which indicates again that part of the explained variance is not "unique"
to any one factor.

Using Equations 15, 19, and 20 the partial correlation between Yj and

F_ becomes
P

1-h2 + 2

j i
It is a measure of the correlation with other factors held constant, and
it might be used in a "corrected" structﬁre matrix to help name the factors.
The square of this term is seen to be the unique contribution to variance
divided by the variance of Zj with Fp removed, or simply how much
(a ratio) of the otherwise unexplained variance it explains. It is used
by several authors as a measure of the importance of factor F . However,

v§ seems to be a stronger measure because it is desirable in factor
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analysis to keep our "importance coefficient" in terms of variance and
absolute for inter-variable comparisons. Thus for evaluating the impor-
tance of a factor vj? is preferable,

It is important to remember that the contribution to variance of an
oblique factor is not a unique value but a range of possible values. We
may think of v?p as a sort of lower bound to this range. Perhaps it
would be worthwhile to also set an upper bound, or to examine the conse-

" quences if two or three factors were removed at a time. Further investi-

gation of the problem is needed. This seétion offers v2

as an easily
computable measure of the unique contribution to variance. Perhaps it
and other measures to come can put oblique rotations on the road to

engineering practice,

Proof of Equation 22: The elements of any jth row (or column)
of (X'X)™} = Ca¢™l givided by the negative of diagonal element 43
give the regression equation of Xj in terms of the other X's.
c. R P e . ' c:
Xz = ElL X =ne- _%flli xj-l‘ _%;lil xj+l-..._ Elﬂ X (23)
33 %33 33 %5

’

Let us prove Equatién 23 in more useful terms, using the column
vector Y ‘instead of Xj and letting X be a set of column vectors

Xl,...,Xm » from the partitioned matrix [YIX]
Then let

e e -fifera -

(F is simply the matrix of correlations for the columns of [Y|X) as ¢
is for X). '

Let the partitioned inverse of F be

[eo 3] = Fh =yl

Then
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therefore

Y'Y{y'x
X'Y[X'X

[l o

(Y]
D
and one of the four resulting equations is

X'Ye + X'XD' = 0

Ij0

]

p' = (%) X'y =B,

(28a)

(2ub)

(2ub)

But the expression in the middle of Equation 24b is the-least squares

solution for thu regression coefficients B in Equation 13 and D is a

column of F-l. Hence Equation 23 is true. We may also show from

Equations 24a and 2ub that

Hence-

For standardized variables Y'Y
values while XB

values,

Thus

and

Y'Ye + Y'XD!

e = (Y'Y - Y'xn)'l

Y'XB = Y'Y = (¥]Y) =

Y'Ye ~ Y'XBe

X
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q

is a row vector of

is a column vector of least squares estimates of those

(25)




1l

This is the well known fact that the diagonal elements of R
contain the multiple correlation of one variable on all the others,

Now we may examine the effect on a least squares regression equa-
tion of eliminating a factor by studying the effect of eliminating a
row and column (before inverting) on the inverse of a correlation
matrix. '

Specifically, let et = (gij) be the m x m matrix of the
inverse of G where G is formed from F = (fij) as before by elim-
inating factor xu .

Brownlee (Reference 62, p.u489) gives us the formula

) fiuf u '
: co = £, 0= 26
gl] 1j fuu : . (26)

In particular for the diagonal'elements of G'l corresponding to

vector Y

.

P

Yy yy f *
uu

(27)

The matrix. C as defined previously may be thought of as the inverse
of the matrix of F after removing the variable Y .

Thus .Equation 26 becomes

£, £,
T I
ij i . .
] J vy

Letting 1i=j=u and solving for fuu in the above equation

£2

' - uy : :
fuu =cut = - : (28)
» yy

Equation 27 may be written

137




E

- f2
f fuu f.u

£
uu

Substituting Equation 28 for f,.m and noting that fyu = fuy

2
o - f S
oo £+ £2
w'yy © yu

. (23)

According to Equation 23

where byu is the regressive coefficient of Y on xu .

But ‘fyy and gyy are diagonal clements equivalent to e in Equation 25.

Hence
1 2
=z 1 ~-R
Y.(X ) °
gy o«X,
and
1 2
- =1 - RS
£ 7. ’
Yy 4

so that Equation 29 becomes

2 b2

f
I SRV SR A" S S =1 -~R2 VLY
Eyy fyyffzc 1 x'ZY.q(X“) 1 r\'.q"cuu
yy uu

or in factor analysis notation for a particular Zj aftur removing Fp
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which is Equation 22,
For m=3 and p=l Equation 22 may be written:

bZ
2 - r2 - Y1
Rr.2s " Rriaa 7€)

and this equation.may be found in Reference 63, p. 339.
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Section VI

pNIQUENESS OF FACTOR ANALYSIS

6.1 INTRODUCTION

Section V1 deals with the problem of uniqueness in factor analysis. The
concept of uniqueness Is described In subsection 6,2. Uniqueness, on
the other hand, is closely related to the much more practical problem of
how large a sample one has to have for doing a factor analysis. So 6.3
shows this relationship and then establishes a means how to solve the

two problems, which are actually the one problem of uniqueness in factor
analysis, '

6,2 THE ISSUE OF UNIQUENESS

The issue of uniqueness can be described as follows. Two independent
teams are told to collect data and perforri a factor analysis of a certain
subiect matter area, The issues are described in the same way to each
team, Data collection and analysis is performed independently by each
team, independent decisions are made about factoring, and separate final
reports are drawn up. The issue of unfqueness is this: will the reports
be "basically" the same?

v Of course, the issue has been transformed into one centering on the
meaning of "basically." If the picture is redrawn slightly the issues
will be clearer. Suppose, to make it more specific, that the study is
the psychological one mentioned above, focused on one large school, and
using examination results of students to uncover mental factors. As we
now impose more conditions on the picture, the reports of the teams ought
to grow more and more similar. First we require that neither team make
longitudinal studies, then we require that there should be no separate
analysis for males or females, nor for school grades. Next we require
that neither team invent and administer to its own test on, say manual
dexterity or reading speed. Finally, we require that each team use ths
same squared multiple correlation for communalities, and varimaz rotation.

It should be clear that continuing to standardize the teams will lead

us to the point that an§ discrepancies between the final reports must be
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due to sampling--one team selected one group of students, ahd the other
team selected another group. There may have been an overlap, but still
the final reports are different,

Let us now make one further change in the foregoing picture.
Suppose that one team has studied boys only, and the second has studied
girls only, and we wish to know whether the differences in their final’
reports are due to sampling dlfferences, or to sex differences. Here we

-are at the crux of the issue of uniqueness. If the two teamslwere

measuring some simple statistic, like the classroom grade or height, the
issue could be simply resolved by the appropriaté F-test or t-test, but

" in factor analySLS we are deallng wlth a highly complex set of inter-

related statlstlcs.

6 3 SAMPLING CONSIDERATIONS

Although it may not appear so at first sight the issue of unlque-
ness is also very closely related to the much more practical problem of
how large a sample one ought to work with in a:factor‘analysis. of
course if observations are cheap, there is no problem, and the issue is

pesolvéd by considering the clerical facilities'avai;able for copying

or punching numbers. Bad data can be freely edited out, and there is
" only one question facing the investigator: is the data really repre-

sentative of the population of response about which I wish to make
inferences? More specifically, the issue can be rephrased as follows:
when an outlier is thrown out because it is unrepresentative, can I be
sure that I am drawing inferences about a population which is also

free ofl"unrepresentative"'observations? If the answer is no, then the
investigator should not throw out such data.

Usually observations are expensive to collect, and one cannot
simply choose 1000 observations because if is a round number. The
investigator must select one sample of 200, say, and remind himself that
another investigator in doing a similar factor analysis might have
selected a different sample of 200 to work with. The conclusions of one
investigator should not contradict those of the other, no matter whether
the second investigator is real or imaginary. So here again we are at

the same issue as that posed previously as the issue of uniqueness.
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This time phrased non-technically, we call it the issue of sampiing
variability., Much of the purely mathematical statistical issue has been
resolved, but the conclusions have not yet been formulated in terms of

rules of thumb which the non-professional can use.

To develop such rules, a simulation program has been written.

‘Basically, it set several imaginary investigators to work on the same

data, as described above. Differences between the results of these
investigators are then examined, and in this way we can discover how
tentatively one investigator must describe his results in order not to
contradict or be contradicted by an imaginary colleague.

Since we shall assume that the data available to investigators are
normally distributed, the starting point of any such simulétion will be
a need to generate multivariate normal deviates in the computer. This
issue does not seem to have been dealt with directly in the literature,
but can be solved in the following manner. Let us assume that random

normal deviates are available as needed. These can be generated directly

. through any of the methods now available, or generated ipdirectly through

a random (rectangular) number generator plus a "normit" routine which
provides a normal deviate corresponding to any desired probability level.
The probability level of course will be obtained from the random number
generator. . With such random deviates X freely available, drawn from

a standardized population with mean zero and variance unity, we desire

to generate a multivariate normal vector variable y which shall be
standardized to zero mean and unit variance, but shall have any prescribed
covariance, i.e., correlation, structure R. The positive definite
correlation matrix R, of size n x n, will then describe the population
which we are factor analysing. If R 1is the unit matrix, then y = x
will serve as the generated variable, but in general it will be necessary
to discover the non-symmetric matrix A, of size n x n, which has the
rrozerty that i

y = Ax has correlation matrix R.

The covariance of the vector variable y is given by
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CE'y) = E(x' (A'A)X).

Using the fact that x is standardized, we can expand the condition
_that y havé matrix R = (rij) by expressing it in terms of conditions
on A = (aij)’ ‘ :
~ There are enough degrees of freedom that we may immediately impose
_ the condition that y . be standurdized. In this case the covariance and
correlation of y are identical and the simple condition that A must

satisfy that
A'A = R.
Eﬁpanding'this, it iIs a system of equations
,{:akiakj ® Ty
‘with diagonal elements, specifically,
2 = =
lafy = myy =2
and rij = rji

following trivally from the above expansion. )

A simple example will illustrate the situation here. If 'n = 2,
we have two independent standard normal deviates 3 and X, and wish
to manufacture two other variates Y, and Y, with the property that

they have a desired correlation r with each other.

It can easily be

verified
1

¥a

that if

= xl

I‘Xl

y, and y, are defined as

+ /I"'I‘Z « X 2

they will have the desired'property. The matrix A thus defined is

easily constructed for n = 2. For n = '3
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algebra becomes complicated, There will be three specified correlations

Tyy s Ty and r,, . Building up the desired variates as before, we have
‘= *

Yo T Pp¥p t - %,

r - PP .
} 23 12713 7 .
Y3 ° Ty t —————— %, + /1-7},-a X3
/1= 1l

where a is the coefficient of X, in Y3 - Although the algebra rapidly
becomes impossibly complex, the proceés is very straightforward and can
easil} be built into an algorithm for use in a computer. Specifically, Iif
i exceeds j , a will be developed in such a way as to produce the
desired correlation rij" and if i equals j , the coefficient will

be developed so as to ensure unit variance of the corresponding y .

The above transformation, or one similar to it, has been dﬁed in
other connections by various authors, but ordinarily for the opposite
purpose, namely to provide uncorrelated variates from correlated ones.

It is important to note that the transformation will produce
conservative results. That is, the correlation matrix will be treated
as if it were a population matrix, even though it is only a sample matrix.
Thus the later sample correlation matrices which are developed by the
algorithm will be more like the original sample matrix than they really
"ought" to be. The only alternative would involve building a model based
on "fiducial" distributions of population parameters, and strong exception
would be taken to this procedure by many investigators. The results
coming from the program are striking enough that the conservatism is not
objectionable.

A computer program, within the UNIVAC 1105, has been developed
incorporating the above algorithm. Basically it contains the following

prodedure.
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1.

Reads the input correlation matrix R , the sample size N to

be used, the matrix size. r , and the number of iterations to be made of

‘the program (see below).

2,

Generates N vector variables y which are pseudo-random

samples from a normal population with correlation matrix R .

3.
L,

Forms the correlation matrix of these variables.
Calculates the squared multiple correlation estimates of the

r communalities,

perform the principal~-factor solution to the factor
analysis, ' ' ‘

S. Prints out the sample correlation matrlx and assoc1ated
communality estimates, and the characterlstlc roots and scaled vectors

of the solution. Saves the answers in computer binary format to be

" used below and in the varimax rotation program.

6. Repeats steps 2 ‘to 5 above the number of times requestéd
in iteration parameter in step 1 above.

7. Calculates the averages and variances of all the eigenvalues
and eigenvectors and prints these out. .

_8Q Returns to step 1 above unless directed to terﬁinate the
program, ' '

The purpose of the program was two-fold. First, to see how the
stability of estimates increases as sample size N inéreases, and
secondly to see how this same stébility is influenced by the correlation
structure. ' Most of tﬁe runs were performed with independent population
data, so that rdots and vectors were calculated from data with the
identity correlation matrix. The number of iterations under various
parameter combinations is given in the following table. A non-orthogonal
design was used because of the machine time and costs associated with
large variate sizes, and was close to optimum when these costs are

considered as part of the design.
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Table 7

Number of Computer Runs of Factor Analysis
on Independent Data

Sample Size
No. of : . . .
variates 100 200 300 Total
30 3 ’ 3
20 11 . 11
10 6 6 6 18
Total ! 17 9 . 6 32

In addition, 11 iterations were made on the classical 2u4 psychological
variate test data from the Spearman-Holzinger Unitary Trait Study, used by
Harman (Reference 2) and others. The same N of 145 was used as in the

“original study, and of course the number of variates, n , was taken as 24.

Some general conclusions of practical relevance are as follows.

1. When we are sampling from independent dafa, the use of squared
multiple correlation (SMC) communalities tends to create "errors of the
first kind."” That is, it leads to production of one or even two roots
which are relatively larger than all the others. For instance, in one of
the three iterations for N = 300, n = 30, the two largest rOOts,
were .95 and .91, followed by much smaller roots +37, .25, .23, etc.
To describe the situation intuitively, what happens is that if the
sampling from independent data appears by accident to produce something
that looks significant, the SMC procedures jump on it and try to make it
look good.

2. When SMC communalities are used, common practice is to assume
that there will be one insignificant positive root for every negative
root. From the previous paragraph, it can be further suggestéd that one
and possibly two further small positive roots can be assumed insignificant
because of the SiC bias mentioned above. Of course, unless the roots
are much in excess of unity there can be no significance imputed to them

in any case. Insignificant roots tend to be largest when N is smal)
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and n is large, as one might expect. When N = 100, n = 20, for

-instance, half of the largest roots exceeded unity, but none was larger

than 1.18.

3. The sampling variability of the largest root in independent data
is surprisingly independent of both N and n. The variance is approxi-
mately .01. It is much larger if the root is significant, but the
coefficient of variation, i.e., the standard deviation relative to the mean
rmﬂmruuhﬂyu&matwwtmpwcmt This can serve as the rule
of thumb for largest eigenvalues.

4. The sampling variability of the eigenvectors corresponding to the
largest root in independent data depends on both N and n. The variance
of the eigenvectors decreases approximately as the inverse of the square
root of N. Thus it is relativeliy insensitive to changes in N. To
illustrate, if N = 100, n = 10, the variance is .08 and the standard
deviation of course is .22. If we take four times as many observations,
the variance is reduced by one-half, and the corresponding standard deviation
is .155, not a great improvement on .22 considering the quadrupling of data
involved.

This sampling variance also diminishes as n increases. However, the
relationship here is much more complex, and the experimental design used in
collecting the data did not permit high clarification on this point. As a

tentative approximation, it appears that the sampling variance diminishes

~as the inverse of n.

The foregoing conclusions seem to be at variance with those of Harman
(Reference 2, Appendix, Table B), but comparison is not possible since his
results do not apply to independent data. From practical experience, it
seems desirable to make the pessimistic assumpfjon that the numerical
information one has collected does not look enéouragihg and that the
investigator would be happy to find any significant pattern at all in it.

The rule of thumb suggested from the foregoing is that the véfiance of
the eigenvectors corresponding to largest roots in independent data is
s/n/ N . .

5. When the data contain significant material, the sample eigenvectors
do have a population value to gravitate towards, and hence the sampling

variability of the coefficients diminishes. Iu.th. “hltiry ivait data, the
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variance of the eigenvectors corresponding to the largest root was ,00%.
For smaller roots, where sampling error only is being measured, the variance
increases to where it corresponds to that of independent data, as one would
expect. This variance of .004 is only one-tenth what one would expect if
the same parameters had operated on independent data.

Unfortunately, no dependable rule of thumb can be inferred which would

apply to all data. It will depend on hoWw strong the population eigenvector

is to which the sample is tending. As a very crude first approximation,
one might measure this strength by means of the largest eigenroot V, and .
hence'adopt 5/Vn/N  as a rule of thumb for the variance.

One further important possibility opens to the investigator because of
the relative unimportance of the size of N. If the investigator has say
400 observations, he can do one analysis on all the data, and then divide the’
data in half at random and do separate analyses on each half as well. Because
the data from 200 observations will be nearly as '"good" as that from 400,
it follows that any factor that seems to appear in the analysis of the 400
observations is dependable only if it can also be discerned in the analysis
of each of the two halves of the data.

6. The most unexpected result of this investigation is that with the
use of SMC communalities on the Unitary Trait data, it can be statistically
established through the sampling scheme uged here that there is only one '
significant factor in the data, rather than four (e.g., Harman, Reference 2,
Table 9.22).

To begin establishing these results, it is instructive first to compare
the difference which the choice of communality imposes on the size of cigen-
values. The averoid and bi-factor data in Table 8 are from Harman (Reference
2, Table 9.21). The calculations were actually performed on different
computers, as well, but Harman establishes (Reference 2, Table 9.23) that
only very minor discrepancies can be associated with computer-to-computer

differences. Major differences are due primarily to choice of communality.

B

It is strikingly evident that both with Si/C communalities for the
correlation matrix, and also with the average of eleven eigenvalues based
on sample matrices from this matrix, the significance has all been . N
concentrated into a singsle general factor. The similarity of this factor to

he general factor based on other communality estimates is given in Table 5.
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Table 8

Relation Between Communality Estimate and Eigenvalues
of 24-variable Matrix, With Sampling Error

Communality Estimate

. Sample S. Dev.

" Order  Averoid Bi-Factor sMC SMC (10 d4.f.)

1 7.63 7.66 7.66 7.55 . .57

h 2 1.65 1.65 .38 .56 : .33
3 1.17 1.18 .38 _ .34 .06

y .90 .96 .29 .29 .07

. 5 400 Co.u2 .24 .26 .06
6 .35 A0 .23 .21 .06

7 .27 D3 § .20 . .18 .04

8 .25 .30 18 . .15 .04

9 .21 .23 1y .12 C .04

10 .14 .16 -.0u : .10 .ou

11 .07 .19 .00 .08 .04

12 NS § : .05 -.01 .05 .Ou

13 .00 .03 -.08 .03 .06

1y -.04 ~.01 -.08 .01 .06

15 -.08 ~.07 -.10 -.02 .06

16 ' -.09 ~-.07 ~-.12 -.05 .07

17 -.13 o -.09 -.15 -.08 .07

18 -.16 ~.14 -.15 -.09 .08

19 -.18 ~.16 -17 -.12 .08

20 -.20 ~.19 -.25 - -.16 .0S

21 -.24 -.21 -.27 -.20 .05

22 -.26 -.23 -.39 -.23 .05

: 23 -.31 ~.27 -.43 . -.28 .06

24 -.34 ~.31 -.u9 -.34 .08

It is clear that there is general agreement between this main factor
calculated in the various Qays. The first value in the ''Average SMC"
column for instance, .580, is the arithmetic average of 11 values, each in

’ : turn calculated from a sample of 145 observations. Those eleven values
range from .472 to .669 with a standard deviation, as indicated, of .072.
(There is a slight downward bias in these averages as calculated, because
they have been scaled in the square metric to the eigenroot, and any
averaging of the numbers ought to be done in the same way instead of

arithmetically as here.)
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Comparison of a General Factor in 24-variable Matrix

Table 9

as Identified by Alternative Communality
Estimates, With Sampling Error

Test Averoid
1 .596
2 .373
3 418
i 484
5 .689
6 .685

"7 .676
8 .676
9 ©.693

10 .ub6

11 .557

12 466

13 .601

1y 425

15 .391

16 .506

17 465

18 .520

19 LU

20 .616

21 ‘ .595

22 .612

23 .690

24 .651

v 7.628

Population
SMC

.595
.376
425
.u87
.690
.686
.673
.678
.693
463
.560
468
.600
L2y
.390
+509
+465
.519
451
.619
.598
.614
.693
.653

7.665

Average
SMC

.580
.367
421
451
.658
.68
.663
.647
675
463
.550
L1485
.593
423
.36
.498
462
.511
483
.631
.597
.615
.686
.656

7.550

S. Dev.
(10 4d.f.)

.072
.077
072
.048
.063
.053
0ly
.051
.065
.077
.0u9
.068
.060
.058
.058
.050
.078
.099
.098
.063
,030
04l
.057
.0u0

.58

So it would appear that the averoid-based general factor might have been

hit upon by chance due to sampling the data and calculating SMC-based

communalities. The surprising thing however is that the avergid-based factor
is only one of four (see Harman, Reference 2, Table 9.22) whereas all the

StC-based samplings succeed in concentrating all the factor informatiorn into

single factor.

A somevhat similar sampling relationship will come ocut if we compare

comminality estimates.

Briefly, the averoid estimate for the first test was
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.505, whereas the sampling provided 11 SMC estimates, varying from .428 to
.666 and averaging .579. Hoﬁever, here we begin to discern the discrepancies
which produce further factors in one case but not in tﬁe other. Nine of
these eleven SMC estimates exceed the averoid estimate. In later tests all
11 SMC-based communalitics exceed the corresponding averoid communality.

The result of this is that the factors of verbal rigidity, spatial, and
memory, discerned by averoid-based communalities, are all absorbed into the
general factor of thé SMC-based communality. The 11 eigenvalues of the
second FactorsAhaveban average value of .556 a5 given in Table 8. Only
two of the eleven exceed unity, and these two do not have the same sign
pattern as any of the factors of Harman (Reference 2, Table 9.22). '

As any objective test of the insignificance of the second factor, a
sign test was made of the éigenvectops from the eleven samplings. If any‘
significant weight, plus or minus, was in this second factor,‘then there
would be a tendency for plus or minus-signs to occur opposite that test in
each of the eleven iterations, With 11'iteratioﬁsvand half of the weights
minus, a non-parametric 1 per cent test'woﬁld consist of 0, 1, 10, or 11
like signs corresponding to one of the 24 tests. None were observed. If
we weaken the test to comprise 0, 1, 2, 9, 10, or 11 like signs, we have
a six per cent test, and would expect to find 1.6 of the 24 tests with
these sign compositions. In fact we found two, test € with nine minus
signs and test 18 with two minus signs, just about as expected. Further,
these signs are the opposite of what we would expect if we were measuring
the.verbal rigidity factor, the number two factor of the averoid analysis.

The conclusion hHere was quite unexpected but seems inescapable--the
use of SMC communalities contributes far more-than expected to the parsimony
with which the relationéhips in the Unitary Trait data can be described.

It would seem that if further factors are to be discerned in the data,
a much larger sample sizc must be employed.

Let us summarize the practical results of the foregoing analysis, as
it touches the issues of uniqueness and sampling, i.e., how sure the
investigator can be of his results.

1. The coefficient of variation of the largest root is 10 per cent.

2. The variance of the eigenvectors associated with this root is

5/Vn/ N .
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3. One hundred to two hundred observations on each of the n variates
should be enough. If more than 200 can be collected, split the data in half
at random and run each half separately as well.

4. Use SMC communalities and make all factors beyond the first prove

their existence before you accept them.
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SECTION VII

APPLICATION OF FACTOR ANALYSIS

7.1 INTRODUCTION .

l Three applications of factor analysis are presented in this

section. Subsection 7.2 contains explanations of how factors are
interpretedbfor psychophysiological data., These examples should

give greater insight into the interpretation problem in general.

' Factor &nalysis is presented purely as a representation technique

in subsection 7.3,

7.2 FACTOR ANALYSIS OF PERSONAL HISTORY AND ANTHROPOMETRY DATA
Included in this section are two factor analytic studies which
were performed on data collected in a psychophysiology experiment.*
The first ahalysis is of personal history data ascertained from the
subjects by a questionaire which contained approximately 150 items.
Many of the variables were derived from more than one response, and

some of the original items were deleted since they were discrete

. data points. After careful quantifying and scrutinizing, 41 variables

were retained, Eighty-eight subjects were used. In this and the
following study, the subjects were University of Dayton students.,
The second study is concerned with 106 anthropometric measure-~

ments taken on 131 subjects in the same experiment. Unlike the

. personal history variables, this data set was already quantified.

Variables included a number of heights, breadths, circumferences,"
and diameters. V

In both studies, the principle components method was applied
using unities as an estimate of communality. The number of eigen-
values greater than one was used as a completeness criterion, i.e.,
determining of the number of factors to be rotated. Varimax was
the method of rotation employed for both,

The personal history data produced 14 factors. It is important

to stress at this point that one must be extremely familiar with the

*These factor analyses were performed under Contract AF33(615)-1119
monitored for the U. S. Air Force by Major Victor H. Thaler, 6570th
Aerospace Medical Research Laboratories. Wright-Patterson Air Force
Base.
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variables and what they reﬁresent, as well as the make-up of the
subject group, before a meaningful interpretation of the factors
can be made. In this case, all the factors could be identified
conceptually.

The best approach to interpreting the various factors is to
examine them one by one and note those variables which have the
highest loadings. For example, in Table 10 it can be seen that
Major Subject (.90), Educational Goals (-.7%), and Vocational
Plans (.88) have the highest loadings in factor 1, indicating
that the factor is associated with educational-vocational plans.
Since Vocational Plans and Major Subject were ranked from "academic"
to "applied" in nature, and Educational Goals was rated in the
direction of higher educational motivation, it would seem logical
to conclude that the more applied the subject's interest, the
more likely that advanced degrees (law, Master, Doctorate) are
not desired. In addition, variables such as Home Address-Distance
(.38) and Full Scale IQ (-.31) should be considered. This is
where familiarity with the data is necessary., It was concluded
here that I.Q. probably had a tendency to relate to higher
educational goals and more academic interests. However, Home
Address-Distance, which is the distance between the subject's
home and the university, was thought to be a less universal value,
The relationship is likely peculiar to this university because
of its academic standards. Thus, this factor would be considered
in terms of educational and vocational plans, with some degree
of ability being associated.

The second factor is quite straightforward in interpreting.
It is obviously related to socio-economic level, The variables
Income of father (.71), Socio-economic Rating (-,77), Education
of Father (.8l), and Education of Mother (.68) load most highly,
indicating a strong relationship between education and income.
Note that Socio-economic Rating is negative in direction because
of the scoring technique employed, i.e., the higher the level,
the lower the score. Furthermore, the educational achievement of
the father appears to be most important. Thus, the variables

indicate the factor is a measure of socio-economic level.
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The remaining factors may be interpreted in a similar manner.
The interaction of the vafiables in some factors is more subtle
and complicated, however, requiring a greater degree of insight.

_ The second example of a factor analytic study is that of

106 relatively homogeneous anthropometric measurements. As seen
in Table 11, 17 factors were produced according to the eigenvalue
criterion. The great number of high correlations between the
variables is responsible for the dramatic reduction of variables
to factors by apprqximately one-sixth.

Using the same interpretation technique as in the previous
example, it can easily be observed which variables load most
highly on each factor, Factor 1 in Table 11, for example, has
avlarge number of variables loading at 0.6 and above. Both
present and maximum weight of the subject load with a number of
body breadths such as shoulder, chest, waist, and buttoék,baé
well as various depths, circumferences, and skinfolds. Also
showing some importance are the somatotypes. ~The fifst, or
endomorphic, somatotype depicts the amount of softness and round-
ness characteristic in the subject's body, while the "G"
(gynandromorphic) somatotype is concerned with the degree of
femininity in the body. In addition, the third, or ectomorphic,
somatotype loads at -0.45, and should be considered since it depicts
the lean or frail body. . ‘

Consequently, the various items point toward a factor which
explains general body size, but not height. The breadths, depths,
and circumferences which load are those of the trunk, and do not
include the extremities, The somatotypes must be considered, as
they help clarify and confirm the nature of the factor, Obviously,
the endomorphic and gynandromorphic body would have greater measure-
ments on the pertinent variables, while the opposite would be true
for the ectomorphic body. Thus, this factor can be labeled general
trunk dimensions.

The second factor has its major loadings on measurements of

height and, naturally, stature. Again, the loadings are extremely

high, usually in the range of 0.80 to 0.95. To a lesser extent, hand




and foot dimensions appear in this factor., This is understandable,
however, since taller people usually have longer hands and feet.
Of equal importance in this factor is the third, or ectomorphiec,

-somatotype with a 0,76 loading, The long, lean body which it
represents is in line with the general nature of this factor.
Théfefore, it would probably be labeled as stature. -

o Continuing, the third factor may be interpreted as being
relevant to grip strength or arm muscle. The highest loadings
appear on the three grip strength variables, while minor loadings
appear on the biceps and forearm measures, Although the later
are about one-half the size of the grip strength variables, the
fact that all other loadings are negligible and that the biceps
and forearm dimensions logically relate to‘the strength necessi-
tates their inclusion in interpretation,

By examination, factor 4 is a testicle factov, and factor 5
is a penis factor. Factor 6 is concerned with dimensions of the
héad, while factor 7 percains more to facial measurements. The
various measurements of the hands, wrist, and feet comprise the

eighth factor. Similarily; the remaining factors may be defined
by caraful examination of significant loading and consideration
of their conceptual importance,

While the above factors are all fairly clear because of the
nature of the variables, this is not always the case, Therefore,
1t must be reiterated that without a completc understanding of
the nature of the vurxables and the subject population, no meaning-

ful interpretation can be made,

7.3 FUNCTION REPRESENTATION
\ A function may be represented in many different ways. The
function "sine" has, for example, a Taylor series representation,
a continued fraction representation, an infinita product representa~
tion, and a Chebyshev series representation,
The choice of method for representing the function depends on
the purposc for which the rcpresentation is to b used, If it is

desired to study a certain property of a function, a representation

156




is cﬁosen which is known to highlight that class of properties. A Fourier
series representation may be chosen when the frequency content of a function
is"of interest, for example. When the purpose includes evaluation of the
function, propertigs of the representation such as speed and region of '
convergence help dictate the choice.

The properties of various classes of representation techniques have

been the point of much interest in the history of mathematics, and probably

the most studied class of representation techniques has been that of

borthOgonal function expansions. This is so because the properties of

orthogonal function expansions have been found most desirable and useful
in practice. However, a set of orthogonal functions is usually obtained
in practice by solving diffcrential equations. Thus, in order to have

a set of orthogonal functions which reflect the properties of a class of
functions, a differéntiél equation must be associated with that class of
functions. .

Out of the prolifefation of différent orthogonal sequences such as
the Legendre, Chebyshev, iaguerre, and Hermite polynomials came the
unifying statement that all of these classical polynomials, ¢n(x), when
multiplied by a particular weight function are solutions to the second

order differential equation’

G(x)y" + {2 G'(x) - ¢l(x)} y' -

2_° :
{B——;——Z— G"(x) + (n + 1) ¢i(x) }y =90

where yn(x) = w(x)¢n(x). The effect of this statement was to provide a

_channel through which theory on one orthogonal sequence could be applied

. to another orthogonal sequence.

In the last five years physical scientists have shown interest in
other methods which yield sets of orthogonal functions. The method abouf
to be discussed may be characterized by an éttempt to represent each member
of a set of functions by a linear combination of nonlinear functions which
span the space of possible given functions. The method obtains the basis
functions by analysis of a symmetric, positive semidefinite matrix obtained

from the given functions by various methods. Moreover, it is possible to
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obtain'a set of orthogonal basis functions which contribute maximally and in a
deéﬁeaéing manner to the total variance of the given functions.

In what follows the given functions ®; (t) (1 =1, 2, ¢ ,n) will be
*#épreséntéd discretely at N values of 't by a vector with j component xij'
In factor analysis the given functions are first standardized by trans-
‘formiﬁg to functions with zero mean and standard deviation of one. A correlation

m%fbi#iwith elements rij is then formed. Factor analysis provides very @any
methods for analyzing the correlation matrix including principal components.

The method of principal components depends on cbtaining a representatiqn of
the transformed given function as

xi = ailF1 + aize f L ainPn

where it is assumed that the (Fk) are orthogonal functions. The method of
principai components is based on the ability to spectrally resolve a linear
symnétric operation into

- T T vel T
R = Alele1 + Azeze2 + + Anenen N

Where_}ei is the normalized eigenvector corresponding to the eigenvalue

xi "of R, Then based on this spectral reSolution of an operator, when

i VI /i;.eki

is chésén;:

A LF 4 ver t
CR e a; F1 + alsz a; F
will fndeed represent xi since

= (aF) (AF)T = AFFTAT = aaT = R

o Other methods of factor analysis make use of the full factor analysis model

whlch 1nc1udes unique factors or functions:

xi = allFl + a P + sc0 4 a F + aIUi .

The ﬁﬁ}pose of this model which includes unique factors is to reduce to a
minimuimn the number of factor functions [Fk} which contribute to more than one
given function Xeo

There are methods in factor amalysis for obtaining a set of factor functions
which are not orthogonal but oblique. These oblique factor functions are chosen
so as to demonstrate the properties of the class of given functions in some way

better than the orthogonal factor functions.
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Orthogonal rather than oblique functions arec usually used for function

representation since they have such nice properties and are easy to handle.
v i Indeed, going from orthogonal to oblique functions is like going from linear
to nonlinear systems,
Nonlinear systéms are, however, many times closer to reality. Just so,
i when it is desired to have the basis functions or factors represent concepts
or actual causes of variance, obliqﬁe factors must be allowed since most '
conceptual causes of variance are related (therefore not independent or
orthogonal.) Then let us consider the effect of these statements on the theory.
When the factor analyéis of functions is stated as the problem of finding
- matrices A and F are such that o
_ Z = AF _ (1)
where A is the matrix ensemble of function vectors,' A and F are
underdetermined, There are an infinite number of matrices A and F which
will satisfy Equation 1, just és there exist an-infinite number of pairs of
vectors which will span a two-dimensional space., In the principal components
‘ factor analysis discussec earlier, the condition of maximal, decreasing
contributions to variance fixed the matrices and made the problem determinate.
v If initially we have any A and F satisfying Equation 1, we may
find others by "rotating" the given factors, i.e, by transforming each of
the given factors by an orthogonal transformation matrix T, For example,
in 2-space the factors may be rotated as shown in Figure 7.
In the analysis, the new oblique factors are derived by rotating a
given (usuélly orthogonal) system to a new, preferred oblique syétem. It
>vis postulated that a set of factors is more meaningful when each factor
goes through a separate "cluster" of functions (when a group of functions
are similar, their vector'répresentations will be close to each other in
space).
In attempting to find mathematical statements equivalent to this
2 intuitive statement, most approaches reason as follows: When a factor
passes through a cluster of functions, the cocfficicnts of that factor
-for the nearby functions will be large while the coefficients of other

factors for this cluster of functions will be small, This rationale has
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INITIALLY AFTER ROTATION

Figure 7. Rotated Factors

" found its mathematical expression in the maximization or minimization of
various functions of powers of various coefficients. i
Representation using-oblique factors is not quite so simple as in the
. ogfhogonal case since the coefficients are no longer Fourler coefficients. '

" However the same method may be used to calculate the coefficients. For

example, supposc we wish to expand a new functior 2 in terms of two known

factors Fl and Fz N
= : ' )
Z alFl + azfz
If the factors are orthoponal, we find the Fourier coefficients by taking

the inner product of both sidcs of Equation 2 with cach of the factors.
Thus,

(zlrl)

a (F|F)) +ay(r |F) (3)

‘ (z|r,) a,(F [F,) + ay(F,|F))

and when the factors are orthogonal,

(File) = Gij




a; = (ZIFi)-

‘However, with oblique factors
(File’ I

Thus the equations -do not degenerate but must be
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Section VIII

RECOMMENDATIONS

Besides a survey of factor analysis, theory was extended in the areas
of effects of the number of observations, sampling effects, interpretation
of factors, and communality. There are other areas of factor analysis
which are suggested to be further studied,

There are many multivariate analysis models which are closely related,
such as, intrinsic analysis, Lodve-Karhunen, latent structure analysis, and
latent profile analysis models. A comparative study is needed to clarify
similarities and differences of these models. '

Factor analysis packages should be made more adaptive, i.e. more
decisions could be made by the computer. For example, the number of
factors for rotation, the grouping of variables, etc., as a matter of fact,
the computer should handle the data ﬁp to the point of naming the factors.
This would make factor analysis available to all scientists with a minimum
effort on their part. v
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Appendix I
COMPUTER PROGRAM WRITE-UPS

The factor analysis package presented in this appendix
consists of four programs whose write-ups are contained in
this appendix. ' The four program abstracts follow below in
front of the write-ups themselves.

A. TFactor Analysis Program

This program is a specialized version of the A70A program
dvailable from System Development Corp. which originated at
the Harvard Statistical Laboratory. A factor matrix is
computed using the Jacobi method. Input is restricted to a
Pearsonian correlation matrix read from Fortran binary tape.

B. Factor Rotation Program

This program is computationally identical to the A26D
program available from System Development Corporation. An
orthogonal rotation is performed using the Kaiser Varimax
criterion. Input is restricted to a Fortran binary tape
prepared by the factor analysis program, SRL-FAl. An ' ccuracy
check is provided by computing and printing the differences
between the original and the final communalities.

€. Oblimax Rotation Program

SRL-0Bl1 is a general purpose program which transforms the
factor analysis model for a set of orthogonal factors to the
model for a set of oblique ones, i.e., it rotates factors to
a more meaningful oblique set.

"Given an orthogonal factor pattérn A on binary tape,

‘the program uses the OBLIMAX criterion to find a transformation
matrix A and reference structure matrix V such that

Vo= oA

as in Harman (Reference 2, p. 310). The heart of this
rotation is the specialized version of an OBLIMAX rotation
routine obtained from the University of Illinois.

Using V and A, other output forms of the oblique
facteor analysis model are then computed, in particular:

P - the.new factor pattern
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S - the factor structure
. ¢ - the matrix of factor correlations
P and ¢ may be written on tape for further use.

D. Factor Scores Estimation Program

“This program computes estimated factor scores using the
equation )

f = ¢A'R™Z

which is (16.2) in Harman (Reference 2, p.3ul). Input to

the program consists of the correlation matrix R, the factor
coefficient matrix A, the factor correlation matrix ¢ (if
needed), and the raw scores. Output consists of the estimated
factor scores (both listing and punched cards), as well as
R‘l, test coefficients for standard scores and for raw scores,
if desired. - -




A. - Factor Analysis Program

CLASS: Self-Contained General Purpose Program .

LANGUAGE: Fortran I1

PUKPCSE: To compute a factor matrix using the Jacobi method

and writc factor loacings on to binary tape.

RESTKRICTIGNS: ' .
No. of variables Maximum of 150
Input Binary tape coataining .
Pearsonian correlation matrix .
Cutput Availeble outputs in BCD mode: -

a) Corrclation matrix
b) Latent roots and vectors
¢) Factor loadings

w
CGutput in binary mode:
a) Factor loadings for
input to factor rota-
tion program
‘UESCRIPTIGN, USE & COM&ENTS: ‘ '
Tapc_Assignment
Logical Tape:
o 2 System BCD input tape.
3 System BCC output tape. L
5 Correlation matrices in
binary mode.
6 Factor londings in binary mode.
9 Used for temporary storage of
eigenvalues and eigenvectors,
Binary Input Tape Format
Record 1 (2 words)
Problem number and order of square matrix (N -
both in integer form.
Record 2 throuygh N+1 (N words each)
One record for c<ach row of correlation matrix :
{onces in dizgonal).
Card Deck_Freparation ‘ -
Each problem to be run roequires two <nto cards as -

follows:
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A. Title Card

Col

Col 2-72

B. Problem Card

Col 1-5

Col

"Col

Col

Col

Col

1

11

12

13

PUNCH 1

Any BCD information desired
as page headings for
printed output.

Problem number used to locate
proper matrix oa input tape
and to identify BCD output.

Number of varlablcs in this
analysis.

If all eigenvectors (and. con-
sequently factor loadings)
‘are to be computed, leave
‘these columns blank., Cther-
wise punch the reduced number
of ¢ genvectors desired.

The correlation matrix with

communality adjustments is
to be printca.

“This matrix is not to be

printed.
Latent roots and vectors are to
be printea.

Latent roots and vectors are
not to be printed.

‘Estimation of communalities

.Eaximum row element.
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R2 (square of multiple¢ correla-

tion cocfficient of given
variable with all other
variables).

Unities are retained.

Image-covariance factor analysis.
(Essentially R°with appropriate
adjustment of the off dxagonal
elements to maintain the posi-
tive semi-dcefinitencess of the
metrix) .




ROUTINES _USED IN_SkL-FAl

Col 14

Finish Caré
Col 1-6

Blank Card

Factor loadinygs arc to be
written on logical tape 6
for input to factor rota-
tion program. .

Factor loadings arc not to be
written.

Punch FINISH

Note: Carus C and D must follow the Problenm

Card for the final problem.

KEWV

FNLEV

This routine is provided to rewind and unload

tapes.

This routine determines the eigenvalues and
eigenvectors of a symmetric matrix. It is
one of scveral eigenvector routinces which

are available from SHPARE.
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B, Factor Rotation Program

" CLASS: - Self-contained Gengral~Purpose Program

LANGUAGE: Fortran II

PURPCSE: To perform an orthogonél rotation using the
Kaiser Varimax criterion. :

RESTRICTIGNS: ‘
Number of variables 250 maximum

Number of factors ) 50 maximum

DESCRIPTICN, USE & COMMENTS:

Tape Assignment

Logical Tope:

2 _ System BCD input tape.
3 System BCD output tape,
6 Binary input of factor

loadings from SRL-FAl

Card Deck Preparation

A. Problem Card

Each problem to be run requires a single control
card as follows:

Col 1-5 ' Problem number used to locate
proper factor loacings on
input tape and to identify
BCL output, '

Col 6-8 Numb¢r of variables.

Col 9-10 Number of factors to be read
) from tape and rotated.

B. Finish Card
A series of problem cards is followed by the
following card to signify that all problems
desired have been run:

Col 1-5 Punch 09999

AL S IR S

RENV .- This routine is employed to rewinc¢ and
unload the binary input tape.
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¢. Oblimax Rotation Program

CLASS:  Self-Contained General Purpose Program

LANGUAGE : Fortran 11

PURPOSE:  To rotate orthogonal factors to a set of oblique factors
using the OBLIMAX criterion and to compute various output forms of

the model. : _ ) .
RESTRICTIONS:
Matrix size No. of variables plus no. of *

factors £ 130,

Input Binary tape containing orthogonal
factor pattern. s
Qutput ’ Available in BCD mode

1) Transformation matrix
2) Reference structure
3) Reference vector correlations
4) Peciprocals and inverses of

. elements of diagonal matrix
5) (Primary) factor pattern
6) (Primary) factor correlations
7) (Primary) factor structure

Binary mode ‘

1) (Primary) factor correlations
for input to second order
factor analysis

2) (Primary) factor pattern

DESCRIPTION, USE & CCMMENTS:

Tape Assignment

Logical Tape:
2 System BCD input tage.

3 Swstem 3CD output tape.

6 Ffactor pattern input anld output
) in binary modc.

5 Factor cerrelation output in

binary mode.

Binary Tape Input Format

Record 1 (3 words) » » °

Problem number, no. variables (HVAR), ns. [acturs (NFTAC).
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Record 2 through NFAC + 1 (1 +'NVAR words each)
" One fecord for each column of factor pattern,
Each record contains ane dummy word followed by NVAR'loadings.
Record NFAC + 2 (3 A6 words for each variable) variable names

Biﬁary Tape Output Format

Factor Correlations Tape §
Record 1 (4 words)

Problem number, 2 dummy variaples, ﬁo. factors.(NFAc).
Rec&rd 2 through NFAC + 1

One fecopd for each row of the correlation matrix.
Record NVAR + 2. factor names |

The values 1 through NFAC are set up in the 3 A6 words for
factors 1 through NFAC respectively,

Factor Pattern Tape A6

Same as binary input format.

‘Card Deck Preparation

Each problem to be run requires two data cards as follows:

A, Problem Card

Col 1-5 " Problem number used to locate proper

matrix on input tape and to iden-
tify printed output.

Col 6-8 .No. variables in this pattern.
Col 8-10 HNo. factors to be rotated.
Col 12-14 BCD output parameter,

Form the sum for desired output:
160 - V, reference structure
010 - g, factor correlations
ool v S, factor structure

blank -~ P, factor pattern (always
given).
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Other options
200 - all output listed on page [2].
Mndified format where available.
400 - all output listed on
page [2]. Modified format
(PWRITE) and original output
(six-place accuracy),

Col 16-20 JOB NUMBER to be written with factor
correlation on tape 5 matrix for
use in locating it,

blank - correlation matrix will
not be written on tape 5,

Col 22-25 '35B HUMBER to be written with factor
pattern on tape 6,

blank - factor pattern will not be
written on tape 6. :

Col 28 Leave blank unless starting new
binary tape
1 - start new tape on logical

unit §
2 - start new tape on logical
unit 6
\ 3 - start both nsw,
Col 20 1l - the variables are to be normal-

ized during rotation (made of
length 1 in common Factor
space to insure that structure
values indicate angular close-
ness of fit),

blank - communality of variables
left unchanged,

Col 31-34 4,2 conversion
* appears on BCD (printed) output
beside values whose absolute
value is greater than or equal
to this number,
blank - the value 0,35 js used,
2,2 - no #'s; three-place accuracy.

B, Title Card

Col 1-78 Any 3CD information will be written
at the top of every page.
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C. Finish Card Last card in deck,

Col 1-5 99999

ROUTINES USED IN SRL-OBl

PREAD Reads the binary inﬁut factor pattern.

PWRITE ~ Prints the selected BCD output,

RWRITE Writes @ and P on tape,

- OBMAX Performs the rotation and calculates the output.
GONINV A roufine for symmetric matrix‘in§eréion.
T - MATHEMATICAL NOTES
I 1. - A mathematical explanation of the OBLIMAX rotation process may

be found in Barman (Reference 2, p. 310-319). The treatment is sketchy
in one respect and the following extension may be helpful for a com-
plete understanding of this program. Harman's terminology will be
used.

OBLIMAX trles to maximize a function cn the elements of the
Reference Vector Structure matrix by an iterative process which
successively maximizes the function in each of the planes formed by
each pair of reference vectors. Although the end rasult is a trans-
formation from orthogonal vectors to oblique ones, before the end
of the first pass we must consider planes formed by, and transforma-
tions on, 0bllgUd vectors,

Therefore let us examine the general case of factor rotation
in the plane of the jth and k™M vectors. We are looking for a

transformation which maximizes a function on the values vig? i=1,
ceey Iy (see 15.4,Harman ) where 4

vi. = 2 v..+)‘v (1)

1j 1171j 21Vik

and where vij 1is the correlation letween variable 1 and reference
vector j, or (Zjih;). But note~that (1) does not define unique Ay
and sz but a "linea of them. This iz a reflection of the fact

that in the oblique case?st¥lcture alone does not duterm1ne the

factor analysis description of common factor space. Such a des-
cription requires two of the several related matrices., Thus in the
plane we must use Xj; and  XAyy; to transform one more set of values,
i.e., find another equation consistant with (1), The most practical
solution is to let Xll and X,; transform the old reference vectors
into the new one: '

L] -
Ay = oaphy Al
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As A; is not yet known we may only deduce by squaring
M = 1 = a2 a2
3 145 = = 11 t 21 + 2)\11A21(Ak,A1) . (2)

Likewise as v{j is not yet known we must find the set of values
(AII’AZI) for which )

. _
L
- Lvis 1 Onvig + vy
2 2 .
L}
)} Vi L Oaviz  Agvi)? 2

is a maximum, For convenience let

Az
X = — (3)
Mi
Then .Allvij t Aqvik = (vij + vyex)Ay;  and we may simply

solve

) 2 (v,. + v, x)“AZI“
max k = ij ik

2 2
A1 L (vig ¢ vpe)?

for x because the 'AZ,'s factor out and cancell,
Now combining (2) and (3)

1= A e 21 1% (A3 Ax)

and solving for A;; and Ay, ylelds

1
Alp =
;"xz + 2x(Aj|Ak) +1
(4)
x
Ay =

f ] .
x2 ¢ 2x(Aj|Ak) + 1
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basis.

OBLIMAX, after finding x, finds the denominator in () byt

'norma%ﬁzing the vector A; + xAy where Ay and A; are the k

and j columns of the "total" transformation matrix A (from the
original set of orthogonal reference vectors to the set of oblique
ones). An "updated" transformation matrix may then be generated by

A]! = }‘llAj + X21Ak' .

Of course OBLIMAX provides two values for x and the same procedures

are applied, using the other value to find the new kth column of A
as well, thus rotating both the kth and jth reference axes.

When the rotation is finished, OBLIMAX has produced a trans-

-formation A with a double use: it transforms the initial ortho-

gonal reference structure (equivalent to the factor pattern in the
orthogonal case) to an oblique reference structure

"V o= AA

and it transforms the initial factors into thz new oblique reference
vectors. Hence A contains in its columns the direction cosigns
of the new reference axes, using the initial set as an orthogonal

The program then computes the matrix of correlations ¢ between
reference vectors

vo= A'AL

The .transformation ‘A from the orthogonal factors to the ref-
erence vectors and a hypothetical transformation T from the orig-
inal factors to the new set of oblique factors are related by

D = T'A. (5)

where D 1is the diagonal matrix of the scaler products, or correla-
tions, between vectors T and A_(p = 1, ..., n). Because A

is defined as the vector Rormal toPthe hyperplane of all factors

T, @ # P» it is uncorrelated with every factor except Tp» and
h¢nce D is diagonal.

From (5)
T' = pa-l
tells us that T' may be calculatad from A~! by normalizing its

rows, since the rows of T' are normalized and left multiplication
by a diagonal matrix is equivalent to multiplying each jth row by




ey

the element dj. To normalize A~! by rows we may multiply each
row by the reciprical of the square root of the diagonal elements of

A-X(A-l)l .

ATl = ATl = (armTh o=yt (5)

So OBLIMAX simply inverts ¢ and finds the elements of D ‘as ex-
plained above. It then finds the oblique factor pattern P and
matrix of correlations between factors @ by the formulas derived
here.

Rt

¢ = T'T = DATM(DAT!)' = DATMAT)'D' = D(A'A)7ID

¢ = DylD

P = sgml = (am)g™l = AT(T'T)"Y = ATTTM(T')"! = A(T")?

V = AA
A = vt
P = vATI(T")"! = w(T'A)"} = vp?

P = v}
Finally, the factor structure may be computed
S = Pg.

NOTE: the program has an option to normalize variables in common
factor spaces during rotation. Then the OBLIMAX function is maximized
on

(z.]A,9)
= -—-—j—l i =
vij lzil N i ‘l, ceesy N

instead of

l, «eep n .

iy (zilnj) s i

This change eliminates the effects of differing variable communali-
ties, making angular closeness of fit the determining factor.
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D: Factor Scores Estimation Program

LANGUAGE: Fortrar II
equation

£o0=

(unity in the diagonal),

solutions. - :

‘ : ' RESTRICTIONS:
) : No. .of variables

- T " No. of subjects

of standardized scores, .and
of estimated factor scores. .
of factor correlatioms; it is not used in orthogonal

DESCRIPTION, USE & COMMENTS:

Tégp Assignment

Logical Tape-+
2
3
6

7

11
15

i ' CLASS: Self-Contained General Purpose Program

VFURPOSE: To estimate factor scores using the

where A is the n x m matrix of common factor
(3 » coefficients, R 1is the

matrix of correlations

is the n x N matrix

is the m x N matrix

¢ is an m x' m matrix

Maximum €0
Maximum 990

System BCD input tape.

System BCD output tape.

Original correlations and
factor cortelations in
binary mode.

Factor loadings in binary
mode.

Raw data in binary mode.

Factor scores in BCD mode
for punching.

Card Deck Preparation

* Each run requires the following cards:
. ' A. Title Card
- Col 1-78 Any BCD information

desired as page headings.

® | s




B. Problem Card 1

Col

Col

‘Col

Col

Coi

Col

Col

Col

1- 5

13- 21

22

190

Problem number used to
locate original
correlations on input
tape and identify BCD
output.

Number uéed to find factor
loadings.

If an oblique solution,
enter the number which
identifies the factor
correlations on tape.
If orthogonal leave
blank.

Number of factors for
which factor scores
are to be computed.
Must be equal to or

.less than the number
on tape.

Number of tape batteries
- of raw data making up
variable set.

R 1inverse is printed.

R inverse is not printed.

Test coefficients (standard
scores) are printed.
Not printed.

Test coefficients (raw
scores) are printed.
Not printed.




c.

Problem Card 2

Col 1-78

File identification in
6 col fields as
indicated in Col 19-21
of previous card.
Maximum of 13,

Repeat above cards for each job.

D.

E.
F.

' ROUTINES USED

Finish Card
Col 1-6

Blank Card
Blank Card

IN SRL-FS:

-INVERT

TION 11

LSHFET
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‘Punch FINISH

Computes R inverse

Positions tape 11 at
correct raw data file.

Shifts integer numbers
into FORTRAN II format
since tape 11 is written
in FORTRAN 1IV.




Appendix II

TDME FUNCTIONS OF COMPUTATION

In this appendix we present a compilation of data which will facilitate
estimation of computation times on various computers. The factor analysis
techniques may be described in terms of the basic matrix operations, sum,
product, inversion, and eigenvalue and eigenvector computation. The following
table gives the computation time where u, 8, and a are the multiplication,
division, and addition times, respectively, for a given computer.

1. Computation of all eigenvalues and eigenvectors of matrix ANXN

by the Jacobi method (Reference 64):
T =108y + 20N83a

2. - Inversion of a symmetric matrix A

NXN by bordering:

T = NY(N-Lu + %-N(Nz +2)5+ %(N—l)(uNz - N+ 15)a
3, Multiplication of ANXM . BMXP:

T = NPMu + NP(M-l)a

B

y, Addition pf ANxM + NxM:

T = NMax

5. Computation of all eigenvalues and eigenvectors of matrix

ANXN by the Householder-Ortega-Wilkinson method:
T = .00162N2,
where T is the time in minutes on the IBM 704 computer.

Application of this equation to another computer will require

multiplication by a scale factor which reflects the ratio of
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‘speed of the other computer compared to the IBM 704.

equation was derived by least s

Reference 65 .
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This empirical

quares methods from data given in
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Appendix III

DESIGN OF A FACTOR ANALYSIS

1, Data Collection
There are features and properties of factor analysis which are

.learned from experience by users, but which are rarely written into

textbooks on the subject. The purpose of this appendix will be to
touch on some of these features. B '
Factor analysis is performed on data which, geoﬁetrically speaking,
consists of N points each situated in n-dimensional space. The purpose
of factor analysis is to describe the shape of the set of N point as
comprehensively and briefly as possible through mathematical shorthand,
In this framework, some of the shortcomings of factor analysis
can be described, In the first place, only the correlation between
pairs of variables is used to describe the raw data. This constitptes
a drastic reduction of the data into very few numbers., If N=200 in
ordinary three dimensional space, then forming the correlations involves
reducing 600 numbers into only 3 numbers., Factor analysis reverses
this process, and from these 3 numbers manufactures 3 characteristic
roots and 9 characteristic vector elements. Evidently the entire
process depends on how adequately all the information in the 600 numbers
can be condensed and contained in only 3 numbers.
These three numbers are the product-moment correlations between
the variables. These are, to begin with, pairwise expressions. They
take each pair of variables, 1 and 2, 2 and 3, 1 and 3, and presume to
describe in one numerical quantity what the relationship is between each’
pair. It becomes clear that much of the important information about
the shape of the set of N points may be lost. It will depend, of
course, on the shape of the set. The implication is clear. Look
at the data out of which the correlations are being calculated. It
is not feasible to try to make 3 dimensional sketches, and besides,
there will usually be far more than just three variables. From n
variables there will be n(n-1)/2 different pairs of variables, and
the same number of correlation coefficients. Even plotting out all

these graphs will be a major job, and for practical purposes it wilil
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be sufficient to plot only a portion of all the N points defined by thé
available data. V

What should the researcher be looking‘for? There are three basic
danger signs to look for.

a. Outliers: data points which don't belong in the set, eithér

because of incorrect collection or copying of data or irrelevant data.

b. Multiple populations: data points will be found to form two
‘clusters ‘in some graphs, in which case a different factor analysis for cach
cluster will be necessary. In practical problems the difference will be

due to some observable fact such as differences of sex, production line,

. experimental technique, etc., which was initially ignored because it was

considered unimportant for purposes of this analysis.

A more difficult danéer sign in this cénnection is the presence of
multiple populations not separated by distance. The only way to spot this
is to go back to the raw data whenever a graph is found whose points follow
an X, Y, or V sﬁaped pattern. The purpose Qill be to see whether points on
the one leg of the -V have any other feature in common. No rigid rules
can be giQen here. The picture will never be as clear-cut as is suggested
here, and only experience can guide the researcher into thosc habits and
practices of data examination which ferret out suspicious weaknesses'in
the original design of data collection.

c. CurVilinearity of data: ‘the product—momenf corrclation coefficient
measures the strength of relationship betwecen two variables cnly if that
relationship is linear. If thc graph of the data plots into the shape of
a C or S, theﬁ the Whole_projected factor analysis should be stalled
at least temporarily until a statistician can be shown the data. The
varioﬁs options which might be recommended by him at this point go beyond
the scope of this study. ‘

These are the major Jdanger signals. ' There ave others, such as
heteroscadosticity (data points pinched together at some‘places cn the
graph ahd spread out at others), but herc again. the ihvestigator should
be guided by the genéraliwarning——if anything looks suspicious, ask

about it.
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The actual calculation of the product-moment correlation
coefficient is described in Section 2, and will not be spelled
out here. What is not so frequently described, and often badly

needed, is advice about avoiding biases due to improper data

collection,

The framework for such a description must begin with the

classical distinétion between population and sample. Ideally,

we might want to construct, for each pair of variables, the

-population correlation coefficient, For practical purposes this

would be unwise in most cases. If only because the labor,
editing, and error control would be so demanding, we would be
led to sample,

It is in defining this sampie that bias is apt to enter,
particularly since ahy investigator is initially prone to the
temptation to feel that a big correlation is a good correlation.
It is only with experience that an investigator comes to dccept
the statistical standard that the population correlation, or an

.unbiased approximation to it, is the only good correlation. To

bias a correlation coefficient, it is necessary only to remove
a few observations from the middle of the set of observations,
and since most observations will be in the middle in any case,
such a removal will not seem particularly unprofessional.

The professional standard which will be adhered to is the
criterion of random sampling--each data set should have the same
chance of having its data incorporated into the computations as
any other data set. Whether this is accomplished by strict random
sampling, systematic sampling, or cluster sampling is irrelevant
here--it is the criterion which must be strictly adhered to if the
sample correlation coefficient is to contain all the informatioﬂ
that it can about the population coefficient.

Another important issue in connection with sampling is that
of sample size, How large a sample ought one to take? Here again
no attempt will be made to repeat the technical approach taken by
most textbooks, but to deal in terms of insights., There i3 a
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popular feeling that something called a "law of averages" exists.
Among non-prdfessional people, this law exists as a feeling that
something ought to happen, and few people would dare to try to

formulate the "law of averages" specifically, in the sense that

they might formulate the law of gravity or Archimedes principle

explicitly. Part of the reason is that certain key concepts such
as variange'are not part of common knowledge, and that an explicit
formulation of the law of averages reqdires this concept.

The best that'can be done to formulate the law of averages
without using the idea of variance is to say that an average
(height, weight, etc.) will be "improved" if it is based on more
and more observations, When the law is formulated explicitly
it appears that this "improvement"” is subject to another law,.
commonly referred to as the "law of diminishing returns". More

specifically, it séyé that bringing in more observations does

- improve the accuracy of an average, but that the hundredth sample

does not contribute -as much as the tenth observation, and the
thousandth observation contributes even less.
These laws also apply to estimating a product-moment correlation
coefficient. The larger the sample, the better will be the coefficient ;
probably; However, successive samples confribute less and less to )
the goodness of the estimate. (These are crude statements only of
the'situafion, and are intended to bevonly a first approximation i
to the kind of formulation which would satisfy a professional
statistician.) ' : i
The actual rate of convergence of the sample correlation
coefficient to its true population value cannot be simply described,
since it depends on what the true value is. If the true correlation i
is high, only a small sample‘is needed, whereas if it is npear zero ‘
a large sample will be required; Since in factor analysis the one
sample we draw will have to serve for estimating many correlations,
it seems desirable to concentrate only on those correlations where

we are likely to be in trouble, that is, cases of zero correlation

.in the population,

2, Basic Requirements for a Factor Analysis

The first issue facing the investigator will be that of deciding
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whether factor analysis is at all relevant to the problem facing him.
Consultation with a professional factor analyst of course is the best
advice that can be given, but in certain situations it may be safe
to proceed with no more than the guidance given here.

Factor analysis was first employed in personality testing and
intelligence testing, and the conditions required for using it can
be described with reference to an analogous situation from psychology.
The reader can then decide for himself whether these conditions apply
to the experimental data he is faced with--whether from an assembly
line, an electrocardiograph or a radar or radio signal full of un-
wanted noise,

First, all the variables must be results rather than causes.
They must be analogous to school examination results from different
subjects--mathematics, physics, music, If any of the variables
are causes--such as parents' I.Q. or education, pre-schbol play
habits, etc.--and the purpose of the study is to find the relation
between causes and effects, then factor analysis is not the proper
technique. . . _

Secondly, the investigator should ask himself whether the kind
of answer provided by factor analysis will be af all relevant to
the question he is posing as he looks at the data. That answer,
in‘the school analogy, will be something to this effect: there is
one factor with high weighting on all subjects, a second with high .
weighting on mathematics and physics and negative weighting on music
appreciation. It will be up to the investigator to discover or decide .
that the first factor is general intelligence and the second is
scientific aptitude. But it must be kept in mind that this kind
of answer may not be what is really wanted. If the investigator
is really interested in deciding who should be admitted to college,
or whether boys differ from girls in scientific ability, then he
should look for new or different analytic techniques. Factor analy-
sis should never be undertaken solely because the cata are in the
proper form for factor analyzing. Any data processing technique such
as factor analysis should be treated as relevant or irrelevant

depending on what problem is being posed, what hypothesis is being
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‘tested, why the data are being collected in the first place.
Assuming that the two foregoing conditions, absence of causal

data and relevance of factor analysis, have been met, we may now

turn to issues of proper data collection. Analysis is bound to

‘be better if good data are collected, and irrelevant data rejected.

Good data will have the folléwing characteristics:

a. Completeness: Each data set will contain one observation

on each of the variables incorporated. This condition is not
absolutely essential, but it eases the computation burden consider-
ably, whether calculations are performed on desk calculators or
electronic computers, ’

A trivial and an unrealistic example will show how one must
proéeed. Suppose the letter x represents a missing observation,
and the data‘consists of six data’éets each of five variates, namely
2, 1, x, 3, x), (x, 3, 2, x, 7), (3, 2, 5, %, 1), (2,.%, 3, 1, x),
(3, 4, x, 1, x) and (4, x, %X, 3, 5). To form the correlation
between the first two variates, we can use only the first, thifd
and fifth data set, since only these contain data on both of these
variates. However, note that we will encounter difficulties in
calculating the correlation between the third and fourth variate,
since only the.fourth data set contains observations on both variables,
and a correlation cannot be computed from one such pair. The investi-
gator must watch for this kind of situation. One other condition must
be met before we can proceed to accept in this way numerical material
containing missing data. That is, there ﬁust be no relationship between

the mdgnitude of the missing numbers and the fact of their being missing.

If tpe ssing numbers are all unusually large, or unusually small, then
nothing’at all can be done with the data.

b.  Relevance: Factor énalysis will be much improved if the investi-
gator has some intelligent suspicions as to what factors might emerge.
In such a situation, the most deéirabieAthing is to choose variables
which will yleld the factor if it exists. Thus if a range of scientific
ability is expected as a factor, then we should incorporate variables
on physics, chemistry, art and music, with the hope that one factor
will have positive weight on the first two and negative weights on the
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last two, either before or after rotation. Of course, factor weightings
are non-directional and the signs of the weights may be reversed,
yielding in effect an anti-scientific factor. This will be due to

the arbitrariness of the calculations, and the investigator can change
all the signs before publishing the results, in order to be able to
provide psychologically meaningful names for the factors. Even the
major factor, the general intelligence one in any examination test
data, may have negative weightings on all the items and thus measure
general stupidity instead of gereral intelligence. Each factor is a
- dimension, such as stupidity-intelligence, and we may refer to the
factor by either pole of the dimension, or by both if the opposite

polarity is not clear from the context. Guilford has suggested
collecting three variables fof each factor suspected to exist, and
this number three should be regarded as a minimum.

c, Factorial simplicity: 1Ideally, each variable should con-

tribute to a very significant degree to only one underlying factor,
otherwise the factorial structure of the data is rendered very complex,
and even rotation will fail to clarify the factors into meaningful
psychological entities. The foregoing is formulated in terms of the
school grade analogy, but the situation is the same in any field of
. investigation.

d. Unbiasedness: The data must, insofar as possible, consti-

tute a'random sample of the population whose factor structure we
are trying to describe. That is, each element in the population
should have the same opportunity as any other element to be incor-
porated. into the sample,

e. Linearity: Raw data are not used directly in a factor
analysis. Rather, the relationship between all possible pairs of

variates, as measured by the product-moment correlation coefficient

) Z(xi-ii)(xj-xj)

1
VI %25 Rt

r
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is employed. Other measures of correlation should not be used.

The important thing to note here is that the product-moment correla-

tion coefficient measures the strength .of the linear relétionship
between two variates. If the relationship is not linear, but is,
say, curvilinear, the coefficient can be calculated but there will
be distortion and bias in any factors which are calculated from
such deceptive coefficients. Note a very important distinction
here: the relationships between the variates must be linear, but
there must not be a linear dependency between variates: one variate
cannot be the sum or the weighted sum of two or more other variates,
in effect. ' 7

f. Editing: Often one will be tempted to throw away data
which do not fall in line with the rest of the material. The

guiding principle here is that one can reject it only if one can

" be sure that he will not be tempted in the future to apply the

results to other data which is similarly out of line.
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; ) Appendix IV
THE REFERENCE GUIDE TO FACTOR ANALYSIS

. INTRODUCTION TO THE REFERENCE GUIDE ,
A factor analysis provides a description of n variables by a
linear combination of m hypothetical factors. The reference guide is ' , .
designed to help a scientist to obtain such a representation, Each step
presents a decision to be made by the user and refers to subsections and

appendices of the report which will help him make these decisions,

A. DESIGN OF EXPERIMENT
1. Choose linearly related variables ., . . App. 3.2e 0
2. Randomly sample the observations
on the variables . , . o s ¢ 6 o o o 2 o & App.- 3.2d'
3. Choose numbers of variables and
observations within computational _
BOUNAS o & ¢« v 4 0 o s 0 s b b s s e e App. 1
%. _.Choose only normally distributed
§ variables if any statistical
' factor analytic techniques will
‘be uSed . 4 4 e 4 4 4 b s s e e e 2.5; 4.5

5. Choose an appropriate number of

variables for a hypothesized number

of factors .« o ¢ « « o o ¢ s ¢ o s+ s » o APP. 3.2b; App. 3.2¢c.
6. Select an appropriate number of

observations for a given set of

variablesS . . . 4 4 v e o s s e 4 4 s . . W63 6.3; App. 3.1

B.  PROCESSING RAW DATA

1. Decide on the correlation coef-

. ficient to be used, ., . . .55 “ s e s s e 2.3
a. For quantitative data, . . . . ¢ . & 2.3A; 2.3¢C o
b. Forranked data . . s+ « o « o o 4 o o ‘ 2.3A
c. For dichotomized data . . . . + & o « 2.3P; 2.3C
2, Treat missing data by three )
available methodS . & v 4 o s 4 4 o s o o 2:6 . , . ’
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3.

u'

Decide whether to scale the
correlation coefficients . o o o » «

Compute the correlation matrix

in proper format . . 4 o 4 4 o o 4 o .

C. THE FACTOR ANALYSIS

1.

2.

Choose the factor analysis technique

" toDe USEd 4 4 4 e s e e e e ae s s

a. Principal-factor technique . . , .
b, Centroid technique , « &« o o « « &

Decide upon the communality values . .,

a. For N > u40, choose unities . . .-

b. For N < 40 and for interpretive
purposes, chobse squared multiple
correlations . o o 4 4 ¢ s 0 b o.

¢. For N < 40 and data reduction

purpcses (preservation of gramian

properties 3,3), choose the method

Of.cootubnoounooo-

D.  ROTATION

1.

3.

Decide whether to rotate v e e e e

a. If purpose of factor analysis is
data reduction: no rotation

b. If purpose of factor analysis is
interpretation: rotation

Choose the number of factors to rotaté

Select the kind of rotation technique .

a. Orthogonal rotation (Varimax), if
uncorrelated, that is independent
factors are hypothesized o s e e »

b. Oblique rotation (Oﬁlimax), if
correlated, that ié dependent

factors are hypothesized ., . . . .
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App. L.A

4.3

App. 1.A
Refs. 10, 66
b4

App. 1.A

2.7; App. 1l.A

5.2

4.5

5.3

App. 1.B

App. 1.C




F.

INTERPRETATION
1. Orthogonal case . .
2, Oblique case . + . »

USING THE FACTORS . . . .

« o s s 0 8 o s e s » 5-3;702

. . . . . L] . . . . . : 5.“

'.0.0.li..l“l7;7.3;APp.lnD
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Appendix V

GLOSSARY

Bi-factor solution: @ solution, where the variables are described by a

general factor, uncorrelated group- factors, and a unique factor each.

Biserial correlation coefficient: a bivariate correlation coefficient,

where one variable is dichotomized and one variable has quantitative

sScores.

Centroid solution: a close approximation to the principal-factor

solution with considerable saving in labor, where the n variables

are described as well by m common and n unique factors.

" Common factor: a factor present in more than one variable of a set of

variables.

Common-factor space: the space of m common factors.

Communality of a variable: the sum of the squared common factor loadings

of the variable; or, the contribution of the common factors to the

total unit variance of the variable; or, common-factor variance.

Complete correlation matrix: a correlation matrix with ones in the main

diagonal.

Complete factor pattern: a factor pattern which represents the total

unit variance of each variable.

Completeness of factorization: the problem of when to stop factoring,

that is when to stop extracting factors.

Completeness test: & test to check for completeness of factorization.
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Complexity of a variable: the number of common facters involved in the
description of a variable.
. ' ] T
Contingency coefficient: a bivariate correlation coefficient, where both

variables are classified into two or morc categories.

Correclation coefficient: the coefficient describing the linear inter-

relationship of two variables.

Correlation matrix: a real, symmetric square matrix R, whose elements

r;y are the correlation c officients between standardized variables ‘ ")
Z; and Zj'

Covarimin: an oblique rotation method.

Dichotomized variable: a variable which is given by its frequencies in

two classes.
Error factor: see specific factor.

Factor: factors are defined as the hypothetical constructs or hypothetical

variables in terms of which a variable is linearly represented.
Factor analysis: the analysis of 2 set of variables into a set of common
and unique factors by factoring the correlation matrix of those

variables,

Factoring problem: the problem of factoring a given correlation matrix

into a factor motrix with an arbitrary reference frame.
Factor loading: same as loading of a factor.

Factor matrix: the matrix of factor loadings.
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Factor method: a method to factor a corrrlation matrix in order to

obtain a representation of a set of variables in terms of factors.

Factor model: the factor model is given by a set of n equations
‘describing .n variables in terms of m common and n unique
factors under the assumption that the variables are linearly composed

of the factors.

Factor pattern: the set of equations describing a set of n variables
in terms -of m common and n unique factors; sometimes only the
table of factor loadings with the factor designations at the head

" of the columns are referred to as a pattern. -

Factor score: the elements of a factor vector.

Factor solution: a solution to a given factoring problem; often the

factor methods are called factor solutions.

Factor structure: a factor structure is a table of correlations between

the variables and the factors.

Four-point coefficient: same as .¢-coefficient.

General factor: a factor prescent in all variables of a set of variables.

Gramian matrix: a symmetric, ‘positive semidefinite matrix,‘where a

' symmetric matrix R is a matrix for which R = R ?' holds.
RT represents thercby the matrixk with rows and columns of R
interchanged, called the transpose of R. Positive semidefiniteness
of a matrix is defined as th2 property of a matrix to have only

positive or zero principal minors.

Group factor: a factor prescnt in more than one but not in all variables

of a set of variables;
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Indeterminacy in factor analysis: referring to the infinitude of factor

solutions accounting for the factorization of an observed correlation
" matrix.

o Kaiser-Dickman Method: an oblique rotation method.

Kendall's 1t-correlation coefficient: a bivariate correlation coefficient

" for ranked data. ] {

Loadings of a factor: the coefficients of the factors in the representation

of variables by the factors. 0

Multiple-factor solution: this solution is obtained by transformation

(rotation) of a principal-factor or centroid solution according to

the principles of simple structure. ‘ :

Multiple-group solution: a factor solution in which several common
factors are extracted in one operation, where these factors can be ) o
. oblique. ‘ h

Oblimax: an oblique rotaticn method. : %

Oblimin: an oblique rotation method.

Oblique rotation method: the reference frame after rotation is an

oblique one.
Observation = measurement = subject = object = individual.

Observed correlation coefficient: a correlation coefficient computed
from observed data.

Orthogonal rotation method: the reference frame after rotation is an .
orthogonal one. i
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Pattern: same as factor pattern.

Pearson's product-moment correlation coefficient: a bivariate correlation

" coefficient for quantitative measurements.

¢-coefficient: a bivariate correlation coefficient for truely dichotomized

variables.

Positive semidefiniteness: see Gramian.

Preferred position of a reference frame: a reference frame for which the

factor pattern has a certain prescribed format, where this format can
be given in different ways, for example by the simple structure

‘eriteria. .

Principal component solution: a principal-factor solution of a complete

correlation matrix; there are no unique factors.

Principal-factor solution: an orthogonal solution, where the variables

are described by m common and '‘n unique factors; the reduced

:correlation matrix is factored.

Product-moment correlation coefficient: same as Pearson's product-moment

correlation coefficient.
Quartimax: §n orthogonal rqtation method.
Quartimin: an oblique rotation method.
Rank: if N objects are arranged in an order according to some property,

which they all posscss in a varying degrec, the objects are said to

be ranked; each object has a rank expressed as a natural number

between 1 and N.




Rank of a matrix: the rank of a matrix is the number of rows (or columns)

of the largest submatrix whosec determinant is not zero,

Reduced correlation matrix: a correlation matrix with communalities in
the main diagonal.

Reduced factor pattern: a factor pattern which represents the common

factor variance of each variable.

Reference axes: geometrical interpretation of the factors for rotation;

the configuration of the reference axes can be oblique or orthogonal.

Reference frame: the frame of reference axes.

Reproduced corrclation coefficient: a correlation coefficient reproduced
from the pattern of factor loadings.

Residual corrclation coefficicnt: a corrclation coefficient computed as

the difference between an observed and a corresponding reproduced

correlation coefficient.

Residual matrix: a matrix whosc entries are the residual correlation
coefficients.

Rotation: procedure to re-orient the arbitrary reference axes, determined
by thc method of factoring the correlation matrix, to some position

-useful for the interpretation of factors.

Rotaticnal problcem:

the problem of rotating the arbitrary reference frame,
obtained as the result of factoring the correlation matrix, into a
preferred position.

Rotation method: same as rotatien technique.

Rotation technique:

a technique to sclve the rotational problem; there
are orthogenal and obligue rvotation techniques,
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Simple structure: a format of the factor pattern, established by Thurstone,

as the goal of rotation, cbserving several criteria.

" . Spearman's rank correlation: a bivariate correldtion coefficient, where

both variables are ranked.

Spearman's rank difference method:  same as Spearman's rank correlation.

Spearman's p-correlation coefficient: same as Spearman's rank correlation.

Specific factor: results from decomposing the uniqueness of a variable
 into two portions of variance--that due to the particular variable
set and that due to error in measurement. Correspondingly two

factors are defined: the speéific‘factor and the error factor.

Standardized variable: a variable whose mean is zero and whose standard

deviation is one.

Structure: same as factor structure.

Symmetric matrix: see Gramian.

Tetrachoric correlation coefficient: a bivariate correlation coefficient,

where both variables are dichotomized.

Thorndike's median ratio coefficient of correlation: a bivariate correlation

coefficient for quantitative data.

Total contribution of a factor to the variances of all variables: the sum

of squared loadings of all variables on that factor.

Total-factor space: the space of m common and n unique factors.

Trace of a matrix: - the sum of diagonal values of a matrix.
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Two-factor sclution: a solution, where all variables are described by

one general factor and one unique factor each.

Uni-factor solution: an orthogonal factor solution, where groups of .

variables are each described by only one factor.

Unique factor: a factor present in a single variable of a set of
variables.

Uniqueness: the contribution of the unique factor of a variable to the
unit variance of that variable.

Uniqueness of a solution: the problem referring to discrepancies of two

factor solutions due to sampling effects.

Variable: & vector of N observed values where N is the number of
observations.

Varimax: an orthogonal rotation method.

Yule's coefficient of association: a bivariate correlation coefficient

for dichotomized data.

Yule's coefficient of colligation: a bivariate correlation coefficient

for dichotomized data.
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